苏科版九年级下册第5章 二次函数5.2 二次函数的图象和性质课后测评
展开2021苏科版数学九年级下学期数学5.2.1 y=ax2的图像和性质课时作业
一、填空题
1、二次函数y=-3x2的图像的开口方向为________,顶点坐标是________,对称轴是________,当x>0时,y随x的增大而________;当x=________时,y有最________值是________.
2、如果抛物线y=(m-1)x2的开口向上,那么m的取值范围是________.
3、已知某二次函数的图像开口向下,且经过原点.请写出一个符合条件的二次函数的表达式:________
4、已知抛物线y=x2,在对称轴左边,随着x的增大,y的值________;在对称轴的右边,随着x的增大,y的值________
5、如果抛物线和直线都经过点(2,6),则=_______,=_______,直线不经过第_______象限,抛物线不经过第_______象限.
6、二次函数,当0时,则与的大小关系是_______
7、把图中图像的代号,填在相应的函数表达式后面:
y=3x2的图像是_____; y=x2的图像是_____;y=-x2的图像是_____; y=-x2的图像是____
8、已知点A(-1,y1),B(-,y2),C(-2,y3)在函数y=(m2+1)x2的图像上,则y1,y2,y3的大小关系是_______
9、已知二次函数y=(a-1)x的图像开口向下,则a= .
10、如图所示A,B为函数y=x2的图像上的两点,且AB⊥y轴.若AB=4,则△OAB的面积为_____
二、选择题
11、下列图像中,是二次函数y=x2的图像的是( )
12、抛物线y=x2,y=x2,y=-x2的共同性质是:①都是开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴;④都关于x轴对称.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
13、如果二次函数y=(a-1)x2的图像有最高点,那么a的取值范围是( )
A.a≠1 B.a>1 C.a<1 D.a=1
14、已知h关于t的函数表达式为h=gt2(g为常数,g>0,t为时间),则该函数的图像为( )
A B C D
15、下列函数中,当x>0时,y随x的增大而增大的是( )
A.y=-x B.y= C.y=3-2x D.y=2x2
16、已知一个二次函数的图象经过,则下列点中不在该函数的图象上的是( )
A. B. C. D.
17、如图,边长为2的正方形ABCD的中心在平面直角坐标系的原点O,AD∥x轴,以O为顶点且过A,D两点的抛物线与以O为顶点且过B,C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是________.
18、给出下列函数:①y=-3x+2;②y=;③y=2x2;④y=3x.上述函数中符合条件“当x>1时,函数值y随自变量x的增大而增大”的是( )
A.①③ B.③④ C.②④ D.②③
三、解答题
19、已知关于x的函数y=(m+2)x是二次函数,且当x>0时,y随x的增大而增大,求m的值.
20、已知函数的图象过点(1,1).
⑴求函数的解析式;
⑵说出这个二次函数图象的顶点坐标、对称轴、开口方向和图象的位置;
⑶在图象上有两点(,)、(,),若0,则与有何关系?若0呢?
21、根据下列条件求的取值范围:
(1)函数,当>0时,随的增大而减小,当<0时,随的增大而增大;
(2)函数有最小值;
(3)抛物线与抛物线的形状相同.
22、在画二次函数的图像时列出了下表:
x | … | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | 12 | 3 | 0 | 3 | 12 | 27 | … |
观察表格,可以得到许多信息:
(1)抛物线的对称轴是直线________;当x=-3时,对应的y值是________;
(2)我们还发现,在对称轴右侧,当x每增加1个单位长度时,对应的y值除了逐渐增大的趋势外,在数量上还存在某种规律,试利用这一规律,求出当x=5时,对应的y值;
(3)求当y≤27时,x的取值范围.
2020-2021学年度苏科版九年级下学期数学5.2.1 y=ax2的图像和性质 培优训练卷(答案)
一、填空题
1、二次函数y=-3x2的图像的开口方向为________,顶点坐标是________,对称轴是________,当x>0时,y随x的增大而________;当x=________时,y有最________值是________.
答案: 向下 (0,0) y轴 减小 0 大 0
2、如果抛物线y=(m-1)x2的开口向上,那么m的取值范围是___m>1_____.
3、已知某二次函数的图像开口向下,且经过原点.请写出一个符合条件的二次函数的表达式:______答案不唯一,如y=-x2_______
4、已知抛物线y=x2,在对称轴左边,随着x的增大,y的值________;在对称轴的右边,随着x的增大,y的值________
答案:减小 增大
5、如果抛物线和直线都经过点(2,6),则=_______,=_______,直线不经过第_______象限,抛物线不经过第_______象限.
答案: ,,四, 三、四;
6、二次函数,当0时,则与的大小关系是_______
7、把图中图像的代号,填在相应的函数表达式后面:
y=3x2的图像是_____; y=x2的图像是_____;y=-x2的图像是_____; y=-x2的图像是____
答案: ③ ① ④ ②
8、已知点A(-1,y1),B(-,y2),C(-2,y3)在函数y=(m2+1)x2的图像上,则y1,y2,y3的大小关系是___y1<y2<y3_____
9、已知二次函数y=(a-1)的图像开口向下,则a= -2 .
10、如图所示A,B为函数y=x2的图像上的两点,且AB⊥y轴.若AB=4,则△OAB的面积为__8______.
二、选择题
11、下列图像中,是二次函数y=x2的图像的是( A )
12、抛物线y=x2,y=x2,y=-x2的共同性质是:①都是开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴;④都关于x轴对称.其中正确的有( B )
A.1个 B.2个 C.3个 D.4个
13、如果二次函数y=(a-1)x2的图像有最高点,那么a的取值范围是( C )
A.a≠1 B.a>1 C.a<1 D.a=1
14、已知h关于t的函数表达式为h=gt2(g为常数,g>0,t为时间),则该函数的图像为( A )
A B C D
15、下列函数中,当x>0时,y随x的增大而增大的是( D )
A.y=-x B.y= C.y=3-2x D.y=2x2
16、已知一个二次函数的图象经过,则下列点中不在该函数的图象上的是( D )
A. B. C. D.
17、如图,边长为2的正方形ABCD的中心在平面直角坐标系的原点O,AD∥x轴,以O为顶点且过A,D两点的抛物线与以O为顶点且过B,C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是__2______.
18、给出下列函数:①y=-3x+2;②y=;③y=2x2;④y=3x.上述函数中符合条件“当x>1时,函数值y随自变量x的增大而增大”的是( B )
A.①③ B.③④ C.②④ D.②③
三、解答题
19、已知关于x的函数y=(m+2)x是二次函数,且当x>0时,y随x的增大而增大,求m的值.
解:∵函数y=(m+2)xm2-m-10是二次函数,∴
∴
又∵当x>0时,y随x的增大而增大,∴m+2>0,∴m>-2,∴m=4.
20、已知函数的图象过点(1,1).
⑴求函数的解析式;
⑵说出这个二次函数图象的顶点坐标、对称轴、开口方向和图象的位置;
⑶在图象上有两点(,)、(,),若0,则与有何关系?若0呢?
答案:⑴,⑵(0,0),轴,第一、二象限和原点,(3),.
21、根据下列条件求的取值范围:
(1)函数,当>0时,随的增大而减小,当<0时,随的增大而增大;
(2)函数有最小值;
(3)抛物线与抛物线的形状相同.
答案:⑴;⑵;⑶;
22、在画二次函数的图像时列出了下表:
x | … | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | 12 | 3 | 0 | 3 | 12 | 27 | … |
观察表格,可以得到许多信息:
(1)抛物线的对称轴是直线________;当x=-3时,对应的y值是________;
(2)我们还发现,在对称轴右侧,当x每增加1个单位长度时,对应的y值除了逐渐增大的趋势外,在数量上还存在某种规律,试利用这一规律,求出当x=5时,对应的y值;
(3)求当y≤27时,x的取值范围.
解:(1)x=0 27
(2)我们发现,在对称轴右侧,当x每增加1个单位长度时,对应的y值除了逐渐增大的趋势外,在数量上还存在规律:当x每增加1个单位时,对应的y值的差分别是3,9,15,21,27,….
所以当x=5时,对应的y值是75.
(3)当y≤27时,x的取值范围是-3≤x≤3.
数学22.1.2 二次函数y=ax2的图象和性质课时训练: 这是一份数学22.1.2 二次函数y=ax2的图象和性质课时训练,共13页。
人教版九年级上册22.1.2 二次函数y=ax2的图象和性质精练: 这是一份人教版九年级上册22.1.2 二次函数y=ax2的图象和性质精练,共7页。
2020-2021学年22.1.2 二次函数y=ax2的图象和性质课时作业: 这是一份2020-2021学年22.1.2 二次函数y=ax2的图象和性质课时作业,共5页。试卷主要包含了以下那个点不在函数的图象上,函数y=ax2,抛物线,,共有的性质是,已知原点是抛物线y=,函数y=ax-2 等内容,欢迎下载使用。