- 专题一 集合与常用逻辑用语-2021届高三《新题速递•数学》11月刊(江苏专用 适用于高考复习) 试卷 0 次下载
- 专题三 函数的概念、图像和性质-2021届高三《新题速递•数学》11月刊(江苏专用 适用于高考复习) 试卷 0 次下载
- 专题十八 圆锥曲线的综合运用-2021届高三《新题速递•数学》11月刊(江苏专用 适用于高考复习) 试卷 0 次下载
- 专题十四 空间点、线、面之间的位置关系-2021届高三《新题速递•数学》11月刊(江苏专用 适用于高考复习) 试卷 0 次下载
- 专题四 指数函数与对数函数及函数的应用-2021届高三《新题速递•数学》11月刊(江苏专用 适用于高考复习) 试卷 0 次下载
专题十七 圆锥曲线的方程-2021届高三《新题速递•数学》11月刊(江苏专用 适用于高考复习)
展开十七 圆锥曲线的方程
一、单选题
1.(2020·黑龙江大庆实验中学月考(文))若椭圆或双曲线上存在点,使得点到两个焦点的距离之比为,且存在,则称此椭圆或双曲线存在“点”,下列曲线中存在“点”的是( )
A. B. C. D.
2.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则
△OAB的面积为( )
A. B. C. D.
3.过点(1,0)作斜率为-2的直线,与抛物线y2=8x交于A,B两点,则弦AB的长为( )
A.2 B.2
C.2 D.2
4.已知抛物线的焦点为,,直线交抛物线于,两点,且为的中点,则p的值为( )
A.3 B.2或4 C.4 D.2
5.已知抛物线的焦点为,过点且倾斜角为的直线与抛物线在第一、二象限分别交于两点,则( )
A. B. C. D.
6.已知两定点和,动点在直线上移动,椭圆以为焦点且经过点,则椭圆的离心率的最大值为( )
A. B. C. D.
7. 已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为( )
A. B. C. D.
8.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
A.5 B.6 C.7 D.8
第II卷(非选择题)
二、解答题
9.(2020·湖南月考)已知椭圆的左、右焦点分别为,,且,设是上一点,且,.
(1)求椭圆的方程;
(2)若不与轴垂直的直线过点,交椭圆于,两点,试判断在轴的负半轴上是否存在一点,使得直线与斜率之积为定值?若存在,求出点的坐标;若不存在,请说明理由.
10.(2020·重庆月考)已知圆,点,P是圆C上一动点,若线段的垂直平分线和相交于点M.
(1)求点M的轨迹方程E.
(2)已知直线交曲线E于A,B两点.
①若射线交椭圆于点Q,求面积的最大值;
②若,垂直于点D,求点D的轨迹方程.
11.(2020·黑龙江哈尔滨三中月考(理))已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点,,是椭圆上的不同两点,且以为直径的圆经过原点.
(1)求椭圆的标准方程;
(2)是否存在圆心在原点的圆恒与直线相切,若存在,求出该圆的方程,若不存在,说明理由;
(3)求的最小值.
12.(2020·江西南昌二中高三其他模拟(文))已知抛物线的焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,两点(点,与不重合),设直线,的斜率分别为,.
(Ⅰ)求抛物线的方程;
(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.
13.(2020·辽宁开学考试)已知A、B分别是椭圆的左、右顶点,P为椭圆C的下顶点,F为其右焦点点M是椭圆C上异于A、B的任一动点,过点A作直线轴以线段AF为直径的圆交直线AM于点A、N,连接FN交直线l于点点G的坐标为,且,椭圆C的离心率为.
求椭圆C的方程;
试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.
14.已知椭圆C:=1(a>b>0)的离心率e=,点P(-,1)在该椭圆上.
(1)求椭圆C的方程;
(2)若点A,B是椭圆C上关于直线y=kx+1对称的两点,求实数k的取值范围.
15.点是圆上一动点,点.
(Ⅰ)若,求直线的方程;
(Ⅱ)过点作直线的垂线,垂足为,求的取值范围.
16.已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)是否存在直线与椭圆交于两点,交轴于点,使成立?若存在,求出实数的取值范围;若不存在,请说明理由.
17.已知椭圆的一个焦点与抛物线的焦点重合,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)直线交椭圆于、两点,线段的中点为,直线是线段的垂直平分线,求证:直线过定点,并求出该定点的坐标.
18.已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为
(1)求椭圆C的方程;
(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程.
19.如图,已知圆E:,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹的方程;
(Ⅱ)设直线与(Ⅰ)中轨迹相交于两点, 直线的斜率分别为(其中).△的面积为, 以为直径的圆的面积分别为.若恰好构成等比数列, 求的取值范围.
20.如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于两点.若的面积为,求直线l的方程.
21.(2020·广东月考(理))如图所示,A,B分别是椭圆C:=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,是|AF|与|FB|的等比中项.点P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x轴.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.
(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.
22.设A,B为曲线C:上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
23.设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
24.(2020·山东其他模拟)椭圆的左、右焦点分别为,离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)点为椭圆上一动点,连接、,设的角平分线交椭圆的长轴于点,求实数的取值范围.
25.(2020·河北石家庄二中高二月考)已知点是圆上的动点,定点,线段的垂直平分线交于点.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点作两条斜率之积为的直线,,,分别与轨迹交于,和,,记得到的四边形的面积为,求的最大值.
26.(2020·陕西西安·高三月考(理))在平面直角坐标系中,已知椭圆:的离心率为,直线和椭圆交于,两点,当直线过椭圆的焦点,且与轴垂直时,.
(1)求椭圆的方程;
(2)是否存在与轴不垂直的直线,使弦的垂直平分线过椭圆的右焦点?若存在,求出直线的方程;若不存在,请说明理由.
27.已知椭圆的离心率为,点在上
(1)求的方程
(2)直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.
28.(2020·云南高二期末(文))已知椭圆C:的离心率为,点P(1,)在椭圆C上,直线l过椭圆的右焦点与椭圆相交于A,B两点.
(1)求椭圆C的方程;
(2)在x轴上是否存在定点M,使得为定值?若存在,求定点M的坐标;若不在,请说明理由.
29.(2020·福建厦门双十中学高三月考(文))如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.
(1)求椭圆C2的标准方程;
(2)设点为椭圆C2上一点.
① 射线与椭圆C1依次交于点,求证:为定值;
② 过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.
30.(2020·贵州高二期末(文))己知椭圆的一个顶点坐标为,离心率为,直线交椭圆于不同的两点
(Ⅰ)求椭圆的方程;
(Ⅱ)设点,当的面积为时,求实数的值.
31.已知点O为坐标原点,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,离心率为,点I,J分别是椭圆C的右顶点、上顶点,△IOJ的边IJ上的中线长为.
(1)求椭圆C的标准方程;
(2)过点H(-2,0)的直线交椭圆C于A,B两点,若AF1⊥BF1,求直线AB的方程.
三、填空题
32.(2020·四川成都七中高二月考(理))已知为椭圆的两个焦点,点在椭圆上,如果线段的中点在 轴上,且,则的值为________.
33.已知椭圆,倾斜角为60°的直线与椭圆分别交于A、B两点且,点C是椭圆上不同于A、B一点,则△ABC面积的最大值为_____.
34.设为双曲线的两个焦点,已知点在此双曲线上,且,若此双曲线的离心率等于,则点到轴的距离等于__________.
35.已知双曲线的焦距为,右顶点为,抛物线的焦点为,若双曲线截抛物线的准线所得线段长为,且,则双曲线的渐近线方程为__________.
四、双空题
36.已知点为抛物线的焦点,则点坐标为______;若双曲线()的一个焦点与点重合,则该双曲线的渐近线方程是____.
专题十七 圆锥曲线的方程-2021届高三《新题速递•数学》9月刊(江苏专用 适用于高考复习): 这是一份专题十七 圆锥曲线的方程-2021届高三《新题速递•数学》9月刊(江苏专用 适用于高考复习),文件包含专题十七圆锥曲线的方程原卷版docx、专题十七圆锥曲线的方程解析版docx等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。
专题十七 圆锥曲线的方程-2021届高三《新题速递•数学》10月刊(江苏专用 适用于高考复习): 这是一份专题十七 圆锥曲线的方程-2021届高三《新题速递•数学》10月刊(江苏专用 适用于高考复习),文件包含专题十七圆锥曲线的方程原卷版docx、专题十七圆锥曲线的方程解析版docx等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。
专题十八 圆锥曲线的综合运用-2021届高三《新题速递•数学》9月刊(江苏专用 适用于高考复习): 这是一份专题十八 圆锥曲线的综合运用-2021届高三《新题速递•数学》9月刊(江苏专用 适用于高考复习),文件包含专题十八圆锥曲线的综合运用原卷版docx、专题十八圆锥曲线的综合运用解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。