高中数学人教版新课标A必修42.5 平面向量应用举例优秀课时作业
展开
这是一份高中数学人教版新课标A必修42.5 平面向量应用举例优秀课时作业,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
精选练习
一、选择题
LISTNUM OutlineDefault \l 3 已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f4,则f4=( )
A.(-1,-2) B.(1,-2) C.(-1,2) D.(1,2)
LISTNUM OutlineDefault \l 3 已知四边形ABCD各顶点坐标是Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-1,-\f(7,3))),Beq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(1,3))),Ceq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2),2)),Deq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(7,2),-2)),则四边形ABCD是( )
A.梯形 B.平行四边形 C.矩形 D.菱形
LISTNUM OutlineDefault \l 3 在△ABC中,AB=3,AC边上的中线BD=eq \r(5), SKIPIF 1 < 0 · SKIPIF 1 < 0 =5,则 SKIPIF 1 < 0 的长为( )
A.1 B.2 C.3 D.4
LISTNUM OutlineDefault \l 3 已知△ABC满足 SKIPIF 1 < 0 = SKIPIF 1 < 0 · SKIPIF 1 < 0 + SKIPIF 1 < 0 · SKIPIF 1 < 0 + SKIPIF 1 < 0 · SKIPIF 1 < 0 ,则△ABC是( )
A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形
LISTNUM OutlineDefault \l 3 已知一条两岸平行的河流河水的流速为2 m/s,一艘小船以垂直于河岸方向10 m/s的速度驶向对岸,则小船在静水中的速度大小为( )
A.10 m/s B.2eq \r(26) m/s C.4eq \r(6) m/s D.12 m/s
LISTNUM OutlineDefault \l 3 在△ABC中,AB=3,AC=2, SKIPIF 1 < 0 =eq \f(1,2) SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 · SKIPIF 1 < 0 的值为( )
A.-eq \f(5,2) B.eq \f(5,2) C.-eq \f(5,4) D.eq \f(5,4)
LISTNUM OutlineDefault \l 3 如图,在矩形ABCD中,AB=eq \r(2),BC=2,点E为BC的中点,点F在边CD上,若 SKIPIF 1 < 0 · SKIPIF 1 < 0 =eq \r(2),则 SKIPIF 1 < 0 · SKIPIF 1 < 0 的值是( )
A.eq \r(2) B.2 C.0 D.1
LISTNUM OutlineDefault \l 3 如图,设P为△ABC内一点,且2 SKIPIF 1 < 0 +2 SKIPIF 1 < 0 + SKIPIF 1 < 0 =0,则S△ABP∶S△ABC=( )
A.eq \f(1,5) B.eq \f(2,5) C.eq \f(1,4) D.eq \f(1,3)
二、填空题
LISTNUM OutlineDefault \l 3 已知力F=(2,3)作用于一物体,使物体从A(2,0)移动到B(-2,3),则力F对物体所做的功是________.
LISTNUM OutlineDefault \l 3 用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N,则每根绳子的拉力大小为________ N.
LISTNUM OutlineDefault \l 3 已知A,B是圆心为C,半径为eq \r(5)的圆上的两点,且|AB|=eq \r(5),则 SKIPIF 1 < 0 · SKIPIF 1 < 0 =________.
LISTNUM OutlineDefault \l 3 若O为△ABC所在平面内一点,且满足( SKIPIF 1 < 0 - SKIPIF 1 < 0 )·( SKIPIF 1 < 0 + SKIPIF 1 < 0 -2 SKIPIF 1 < 0 )=0,则△ABC的形状为________.
LISTNUM OutlineDefault \l 3 如图所示,在倾斜角为37°(sin 37°=0.6),高为2 m的斜面上,质量为5 kg的物体m沿斜面下滑,物体m受到的摩擦力是它对斜面压力的0.5倍,则斜面对物体m的支持力所做的功为________J,重力所做的功为________J(g=9.8 m/s2).
三、解答题
LISTNUM OutlineDefault \l 3 已知△ABC是直角三角形,CA=CB,D是CB的中点,E是AB上的一点,且AE=2EB.
求证:AD⊥CE.
LISTNUM OutlineDefault \l 3 已知点A(2,-1).求过点A与向量a=(5,1)平行的直线方程.
LISTNUM OutlineDefault \l 3 如图所示,一个物体受到同一平面内三个力F1,F2,F3的作用,沿北偏东45°的方向移动了8 m,其中|F1|=2 N,方向为北偏东30°;|F2|=4 N,方向为北偏东60°;|F3|=6 N,方向为北偏西30°,求合力F所做的功.
LISTNUM OutlineDefault \l 3 如图,平行四边形ABCD中,E,F分别是AD,AB的中点,G为BE与DF的交点.若 SKIPIF 1 < 0 =a, SKIPIF 1 < 0 =b.
(1)试以a,b为基底表示 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(2)求证:A,G,C三点共线.
答案解析
LISTNUM OutlineDefault \l 3 答案为:D;
解析:由物理知识知f1+f2+f3+f4=0,故f4=-(f1+f2+f3)=(1,2).
LISTNUM OutlineDefault \l 3 答案为:A;
解析:∵ SKIPIF 1 < 0 =eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(8,3))), SKIPIF 1 < 0 =(3,4),∴ SKIPIF 1 < 0 =eq \f(2,3) SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ∥ SKIPIF 1 < 0 ,即AB∥DC.
又| SKIPIF 1 < 0 |=eq \r(4+\f(64,9))=eq \f(10,3),| SKIPIF 1 < 0 |=eq \r(9+16)=5,
∴| SKIPIF 1 < 0 |≠| SKIPIF 1 < 0 |,∴四边形ABCD是梯形.
LISTNUM OutlineDefault \l 3 答案为:B;
解析:∵ SKIPIF 1 < 0 = SKIPIF 1 < 0 - SKIPIF 1 < 0 =eq \f(1,2) SKIPIF 1 < 0 - SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 =eq \f(1,4) SKIPIF 1 < 0 - SKIPIF 1 < 0 · SKIPIF 1 < 0 + SKIPIF 1 < 0 ,即eq \f(1,4) SKIPIF 1 < 0 =1.∴| SKIPIF 1 < 0 |=2,即AC=2.
LISTNUM OutlineDefault \l 3 答案为:C;
解析:由题意得, SKIPIF 1 < 0 2= SKIPIF 1 < 0 · SKIPIF 1 < 0 + SKIPIF 1 < 0 · SKIPIF 1 < 0 + SKIPIF 1 < 0 · SKIPIF 1 < 0
= SKIPIF 1 < 0 ·( SKIPIF 1 < 0 + SKIPIF 1 < 0 )+ SKIPIF 1 < 0 · SKIPIF 1 < 0 = SKIPIF 1 < 0 2+ SKIPIF 1 < 0 · SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 · SKIPIF 1 < 0 =0,∴ SKIPIF 1 < 0 ⊥ SKIPIF 1 < 0 ,∴△ABC是直角三角形.
LISTNUM OutlineDefault \l 3 答案为:B;
解析;设河水的流速为v1,小船在静水中的速度为v2,船的实际速度为v,
则|v1|=2,|v|=10,v⊥v1,∴v2=v-v1,v·v1=0,
∴|v2|=eq \r(v2-2v·v1+v\\al(2,1))=2eq \r(26)(m/s).
LISTNUM OutlineDefault \l 3 答案为:C;
解析:因为 SKIPIF 1 < 0 =eq \f(1,2) SKIPIF 1 < 0 ,所以点D是BC的中点,
则 SKIPIF 1 < 0 =eq \f(1,2)( SKIPIF 1 < 0 + SKIPIF 1 < 0 ), SKIPIF 1 < 0 =eq \f(1,2) SKIPIF 1 < 0 =eq \f(1,2)( SKIPIF 1 < 0 - SKIPIF 1 < 0 ),
所以 SKIPIF 1 < 0 · SKIPIF 1 < 0 =eq \f(1,2)( SKIPIF 1 < 0 + SKIPIF 1 < 0 )·eq \f(1,2)( SKIPIF 1 < 0 - SKIPIF 1 < 0 )=eq \f(1,4)( SKIPIF 1 < 0 - SKIPIF 1 < 0 )=eq \f(1,4)(22-32)=-eq \f(5,4),选C.
LISTNUM OutlineDefault \l 3 答案为:A;
解析:∵ SKIPIF 1 < 0 = SKIPIF 1 < 0 + SKIPIF 1 < 0 , SKIPIF 1 < 0 · SKIPIF 1 < 0 = SKIPIF 1 < 0 ·( SKIPIF 1 < 0 + SKIPIF 1 < 0 )
= SKIPIF 1 < 0 · SKIPIF 1 < 0 + SKIPIF 1 < 0 · SKIPIF 1 < 0 = SKIPIF 1 < 0 · SKIPIF 1 < 0 =eq \r(2)| SKIPIF 1 < 0 |=eq \r(2),
∴| SKIPIF 1 < 0 |=1,| SKIPIF 1 < 0 |=eq \r(2)-1,
∴ SKIPIF 1 < 0 · SKIPIF 1 < 0 =( SKIPIF 1 < 0 + SKIPIF 1 < 0 )·( SKIPIF 1 < 0 + SKIPIF 1 < 0 )
= SKIPIF 1 < 0 · SKIPIF 1 < 0 + SKIPIF 1 < 0 · SKIPIF 1 < 0 =-eq \r(2)(eq \r(2)-1)+1×2=-2+eq \r(2)+2=eq \r(2),故选A.
LISTNUM OutlineDefault \l 3 答案为:A;
解析:设AB的中点是D.∵ SKIPIF 1 < 0 + SKIPIF 1 < 0 =2 SKIPIF 1 < 0 =-eq \f(1,2) SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 =-eq \f(1,4) SKIPIF 1 < 0 ,
∴P为CD的五等分点,∴△ABP的面积为△ABC的面积的eq \f(1,5).
LISTNUM OutlineDefault \l 3 答案为:1;
解析:∵ SKIPIF 1 < 0 =(-4,3),∴W=F·s=F· SKIPIF 1 < 0 =(2,3)·(-4,3)=-8+9=1.
LISTNUM OutlineDefault \l 3 答案为:10;
解析: 如图,由题意,
得∠AOC=∠COB=60°,| SKIPIF 1 < 0 |=10,
则| SKIPIF 1 < 0 |=| SKIPIF 1 < 0 |=10,即每根绳子的拉力大小为10 N.
LISTNUM OutlineDefault \l 3 答案为:-2.5.
解析:由弦长|AB|=eq \r(5),可知∠ACB=60°,
SKIPIF 1 < 0 · SKIPIF 1 < 0 =- SKIPIF 1 < 0 · SKIPIF 1 < 0 =-| SKIPIF 1 < 0 || SKIPIF 1 < 0 |cs∠ACB=-2.5.
LISTNUM OutlineDefault \l 3 答案为:等腰三角形;
解析:( SKIPIF 1 < 0 - SKIPIF 1 < 0 )·( SKIPIF 1 < 0 + SKIPIF 1 < 0 -2 SKIPIF 1 < 0 )
=( SKIPIF 1 < 0 - SKIPIF 1 < 0 )·( SKIPIF 1 < 0 - SKIPIF 1 < 0 + SKIPIF 1 < 0 - SKIPIF 1 < 0 )
=( SKIPIF 1 < 0 - SKIPIF 1 < 0 )·( SKIPIF 1 < 0 + SKIPIF 1 < 0 )=| SKIPIF 1 < 0 |2-| SKIPIF 1 < 0 |2=0,∴| SKIPIF 1 < 0 |=| SKIPIF 1 < 0 |.
LISTNUM OutlineDefault \l 3 答案为:0,98;
解析:物体m的位移大小为|s|=eq \f(2,sin 37°)=eq \f(10,3)(m),
则支持力对物体m所做的功为W1=F·s=|F||s|cs 90°=0(J);
重力对物体m所做的功为W2=G·s=|G||s|cs 53°=5×9.8×eq \f(10,3)×0.6=98(J).
LISTNUM OutlineDefault \l 3 证明:如图,以C为原点,CA所在直线为x轴,建立平面直角坐标系.
设AC=a,则A(a,0),B(0,a),
Deq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(a,2))),C(0,0),Eeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)a,\f(2,3)a)).所以 SKIPIF 1 < 0 =eq \b\lc\(\rc\)(\a\vs4\al\c1(-a,\f(a,2))), SKIPIF 1 < 0 =eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)a,\f(2,3)a)).
所以 SKIPIF 1 < 0 · SKIPIF 1 < 0 =-a·eq \f(1,3)a+eq \f(a,2)·eq \f(2,3)a=0,
所以 SKIPIF 1 < 0 ⊥ SKIPIF 1 < 0 ,即AD⊥CE.
LISTNUM OutlineDefault \l 3 解:设所求直线上任意一点P(x,y),
则 SKIPIF 1 < 0 =(x-2,y+1).
由题意知 SKIPIF 1 < 0 ∥a,故5(y+1)-(x-2)=0,
即x-5y-7=0.
故过点A与向量a=(5,1)平行的直线方程为
x-5y-7=0.
LISTNUM OutlineDefault \l 3 解:以O为原点,正东方向为x轴的正方向建立平面直角坐标系,
如图所示,则F1=(1,eq \r(3)),F2=(2eq \r(3),2),F3=(-3,3eq \r(3)),
所以F=F1+F2+F3=(2eq \r(3)-2,2+4eq \r(3)).
又位移s=(4eq \r(2),4eq \r(2)),故合力F所做的功为
W=F·s=(2eq \r(3)-2)×4eq \r(2)+(2+4eq \r(3))×4eq \r(2)=4eq \r(2)×6eq \r(3)=24eq \r(6)(J).
即合力F所做的功为24eq \r(6) J.
LISTNUM OutlineDefault \l 3 解:(1) SKIPIF 1 < 0 = SKIPIF 1 < 0 - SKIPIF 1 < 0 =eq \f(1,2)b-a, SKIPIF 1 < 0 = SKIPIF 1 < 0 - SKIPIF 1 < 0 =eq \f(1,2)a-b.
(2)证明:因为D,G,F三点共线,则 SKIPIF 1 < 0 =λ SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 = SKIPIF 1 < 0 +λ SKIPIF 1 < 0 =eq \f(1,2)λa+(1-λ)b.
因为B,G,E三点共线,则 SKIPIF 1 < 0 =μ SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 = SKIPIF 1 < 0 +μ SKIPIF 1 < 0 =(1-μ)a+eq \f(1,2)μb,
由平面向量基本定理知eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(1,2)λ=1-μ,,1-λ=\f(1,2)μ,))解得λ=μ=eq \f(2,3),
∴ SKIPIF 1 < 0 =eq \f(1,3)(a+b)=eq \f(1,3) SKIPIF 1 < 0 ,所以A,G,C三点共线.
相关试卷
这是一份巩固练习_平面向量应用举例_基础,共5页。
这是一份高中数学人教版新课标A必修42.5 平面向量应用举例巩固练习,共13页。试卷主要包含了5 平面向量应用举例等内容,欢迎下载使用。
这是一份高中数学人教版新课标A必修51.1 正弦定理和余弦定理巩固练习,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。