搜索
    上传资料 赚现金
    英语朗读宝

    【精品】人教版 八年级下册数学 17.1 第1课时 勾股定理 (课件PPT+视频素材)

    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      17.1 第1课时 勾股定理.ppt
    • 视频
      勾股定理视频.flv
    17.1 第1课时 勾股定理第1页
    17.1 第1课时 勾股定理第2页
    17.1 第1课时 勾股定理第3页
    17.1 第1课时 勾股定理第4页
    17.1 第1课时 勾股定理第5页
    17.1 第1课时 勾股定理第6页
    17.1 第1课时 勾股定理第7页
    17.1 第1课时 勾股定理第8页
    当前视频格式暂不支持在线播放,请下载使用
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级下册17.1 勾股定理精品ppt课件

    展开

    这是一份人教版八年级下册17.1 勾股定理精品ppt课件,文件包含171第1课时勾股定理ppt、勾股定理视频flv等2份课件配套教学资源,其中PPT共30页, 欢迎下载使用。
    1.经历勾股定理的探究过程,了解关于勾股定理的一 些文化历史背景,会用面积法来证明勾股定理,体 会数形结合的思想.(重点)2.会用勾股定理进行简单的计算 .(难点)
    其他星球上是否存在着“人”呢?为了探寻这一点,世界上许多科学家向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.
    据说我国著名的数学家华罗庚曾建议“发射”一种勾股定理的图形(如图).
    很多学者认为如果宇宙“人”也拥有文明的话,那么他们一定会认识这种语言,因为几乎所有具有古代文化的民族和国家都对勾股定理有所了解.
    勾股定理有着悠久的历史:古巴比伦人和古代中国人看出了这个关系,古希腊的毕达哥拉斯学派首先证明了这关系,下面让我们一起来通过视频来了解吧:
    我们一起穿越回到2500年前,跟随毕达哥拉斯再去他那位老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面(如图):
    问题1 试问正方形A、B、C面积之间有什么样的数量关系?
    问题2 图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?
    问题3 在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):
    这两幅图中A,B的面积都好求,该怎样求C的面积呢?
    方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):
    方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):
    你还有其他办法求C的面积吗?
    根据前面求出的C的面积直接填出下表:
    思考 正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?
    命题1 如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
    由上面的几个例子,我们猜想:
    下面的动图形象的说明了命题1的正确性,让我们跟着以前的数学家们用拼图法来证明这一猜想.
    证法1 让我们跟着我国汉代数学家赵爽拼图,再用所拼的图形证明命题吧.
    S小正方形=(b-a)2,
    ∴S大正方形=4·S三角形+S小正方形,
    “赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲.因此,这个图案被选为2002年在北京召开的国际数学家大会的会徽.
    证法2 毕达哥拉斯证法,请先用手中的四个全等的直角三角形按图示进行拼图,然后分析其面积关系后证明吧.
    ∴a2+b2+2ab=c2+2ab,
    ∴a2 +b2 =c2.
    证明:∵S大正方形=(a+b)2=a2+b2+2ab,
    ∴a2 + b2 = c2.
    证法3 美国第二十任总统伽菲尔德的“总统证法”.
    如图,图中的三个三角形都是直角三角形,求证:a2 + b2 = c2.
    在我国又称商高定理,在外国则叫毕达哥拉斯定理,或百牛定理.
    如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
    在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.
    例1 如图,在Rt△ABC中, ∠C=90°.
    (1)若a=b=5,求c;
    (2)若a=1,c=2,求b.
    (1)若a:b=1:2 ,c=5,求a;
    (2)若b=15,∠A=30°,求a,c.
    【变式题1】在Rt△ABC中, ∠C=90°.
    x2+(2x)2=52,
    因此设a=x,c=2x,根据勾股定理建立方程得
    (2x)2-x2=152,
    已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.
    【变式题2】 在Rt△ABC中,AB=4,AC=3,求BC的长.
    解:本题斜边不确定,需分类讨论:当AB为斜边时,如图,当BC为斜边时,如图,
    当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易漏解.
    例2 已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.
    解:由勾股定理可得 AB2=AC2+BC2=25, 即 AB=5. 根据三角形面积公式, ∴ AC×BC= AB×CD. ∴ CD= .
    由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.
    求下列图中未知数x、y的值:
    解:由勾股定理可得 81+ 144=x2, 解得x=15.
    解:由勾股定理可得 y2+ 144=169,解得 y=5
    1.下列说法中,正确的是 ( )A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2
    2.图中阴影部分是一个正方形,则此正方形的面积为 .
    3.在△ABC中,∠C=90°.(1)若a=15,b=8,则c= . (2)若c=13,b=12,则a= .4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.
    5.求斜边长17 cm、一条直角边长15 cm的直角三角形的面积.
    解:设另一条直角边长是x cm. 由勾股定理得152+ x2 =172, 即x2=172-152=289–225=64,∴ x=±8(负值舍去),∴另一直角边长为8 cm,
    直角三角形的面积是
    6.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.
    解:∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴BD=AD=1,∴AB= .在Rt△ADC中,∵∠C=30°,∴AC=2AD=2,∴CD= ,∴BC=BD+CD=1+ ,∴△ABC的周长=AB+AC+BC= .
    解:∵AE=BE,∴S△ABE= AE·BE= AE2.又∵AE2+BE2=AB2,∴2AE2=AB2,∴S△ABE= AB2= ;同理可得S△AHC+S△BCF= AC2+ BC2.又∵AC2+BC2=AB2,∴阴影部分的面积为 AB2= .
    7.如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,求△ABE及阴影部分的面积.

    相关课件

    初中数学人教版八年级下册17.1 勾股定理获奖课件ppt:

    这是一份初中数学人教版八年级下册17.1 勾股定理获奖课件ppt,文件包含核心素养八年级下册171勾股定理第1课时课件pptx、核心素养八年级下册171勾股定理第1课时教案docx、核心素养八年级下册171勾股定理第1课时课后练习docx、核心素养八年级下册171勾股定理第1课时随堂检测docx等4份课件配套教学资源,其中PPT共37页, 欢迎下载使用。

    初中数学人教版八年级下册17.1 勾股定理课堂教学ppt课件:

    这是一份初中数学人教版八年级下册17.1 勾股定理课堂教学ppt课件,共30页。PPT课件主要包含了一般三角形,直角三角形,两锐角互余,知识回顾,学习目标,课堂导入,新知探究,跟踪训练,随堂练习,勾股定理等内容,欢迎下载使用。

    人教版八年级下册17.1 勾股定理示范课课件ppt:

    这是一份人教版八年级下册17.1 勾股定理示范课课件ppt,共21页。PPT课件主要包含了情境引入,探究新知,如何证明这个命题,拓展应用,我们应先求出什么量,先求出对角线,线段BD,线段OBOD,怎么求OBOD呢,类题运用等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map