年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT

    立即下载
    加入资料篮
    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT第1页
    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT第2页
    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT第3页
    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT第4页
    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT第5页
    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT第6页
    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT第7页
    【精品】人教版 八年级下册数学 18.1.2 第2课时 平行四边形的判定(2) 课件PPT第8页
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中人教版18.1.2 平行四边形的判定试讲课ppt课件

    展开

    这是一份初中人教版18.1.2 平行四边形的判定试讲课ppt课件,共27页。PPT课件主要包含了情景引入,导入新课,讲授新课,你能证明吗,一组对应边相等,两组对边分别相等,证一证,ABCD,ACCA,∠1∠2等内容,欢迎下载使用。
    1.掌握“一组对边平行且相等的四边形是平行四边形” 的判定方法.(重点)2.会进行平行四边形的性质与判定的综合运用.(难点)
    数学来源于生活,高铁被外媒誉为我国新四大发明之一,我们知道铁路的两条直铺的铁轨互相平行,那么铁路工人是怎样的确保它们平行的呢?
    只要使互相平行的夹在铁轨之间的枕木长相等就可以了
    那这是为什么呢?会不会跟我们学过的平行四边形有关呢?
    问题 我们知道,两组对边分别平行或相等的是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?
    猜想1:一组对边相等的四边形是平行四边形.
    等腰梯形不是平行四边形,因而此猜想错误.
    猜想2:一组对边平行的四边形是平行四边形.
    梯形的上下底平行,但不是平行四边形,因而此猜想错误.
    活动 如图,将线段AB向右平移BC长度后得到线段 CD,连接AD,BC,由此你能猜想四边形ABCD的形状吗?
    四边形ABCD是平行四边形
    猜想3:一组对边平行且相等的四边形是平行四边形.
    作对角线构造全等三角形
    如图,在四边形ABCD中,AB=CD且AB∥CD,求证:四边形ABCD是平行四边形.
    证明:连接AC.∵AB∥CD, ∴∠1=∠2.
    在△ABC和△CDA中,
    ∴△ABC≌△CDA(SAS),
    ∴BC=DA .又∵AB= CD,
    ∴四边形ABCD是平行四边形.
    平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形.
    几何语言描述:在四边形ABCD中,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.
    证明: ∵四边形ABCD是平行四边形,∴AB =CD,EB //FD.又∵EB = AB ,FD = CD,∴EB =FD .∴四边形EBFD是平行四边形.
    例1 如图 ,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.
    例2 如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.
    证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△DBF中, AC=BD ,∠A=∠D, AE=DF ,∴△ACE≌△DBF(SAS),∴CE=BF,∠ACE=∠DBF,∴CE∥BF,∴四边形BFCE是平行四边形.
    【变式题】 如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.
    证明:(1)∵点C是AB的中点,∴AC=BC.在△ADC与△CEB中, AD=CE , CD=BE , AC=BC ,∴△ADC≌△CEB(SSS),(2)∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE.又∵CD=BE,∴四边形CBED是平行四边形.
    1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是 (  )A.AB∥CD,AB=CDB.AB∥CD,BC∥AD C.AB∥CD,BC=AD D.AB=CD,BC=AD
    证明:∵四边形AEFD和EBCF都是平行四边形,∴AD∥ EF,AD=EF, EF∥ BC, EF=BC.∴AD∥ BC,AD=BC.∴四边形ABCD是平行四边形.
    2.四边形AEFD和EBCF都是平行四边形,求证:四边形ABCD 是平行四边形.
    例3 如图,△ABC中,BD平分∠ABC,DF∥BC,EF∥AC,试问BF与CE相等吗?为什么?解:BF=CE.理由如下:∵DF∥BC,EF∥AC,∴四边形FECD是平行四边形,∠FDB=∠DBE,∴FD=CE.∵BD平分∠ABC,∴∠FBD=∠EBD,∴∠FBD=∠FDB.∴BF=FD.∴BF=CE.
    例4 如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.求证:四边形BCED′是平行四边形.
    证明:由题意得∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′.
    ∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴CE∥D′B,CE=D′B,∴四边形BCED′是平行四边形.
    此题利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,再结合平行四边形的判定及性质进行解题.
    1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有(  )A.3种  B.4种  C.5种  D.6种
    2.如图,在▱ABCD中,E,F分别是AB,CD的中点,连接DE,EF,BF,写出图中除▱ABCD以外的所有的平行四边形.
    解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵E,F分别是AB,CD的中点,∴AE=BF=DE=FC,∴四边形ADFE是平行四边形,四边形EFCB是平行四边形,四边形BEDF是平行四边形.
    1.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是 (  )A.AF=CE B.AE=CF C.∠BAE=∠FCD D.∠BEA=∠FCE
    2. 已知四边形ABCD中,AB∥CD,AB=CD,周长为40cm,两邻边的比是3:2,则较大边的长度是(  ) A.8cm B.10cm C.12cm D.14cm
    3.如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形共有____个.
    4.如图,点E,C在线段BF上,BE=CF,∠B=∠DEF,∠ACB=∠F,求证:四边形ABED为平行四边形.
    证明:∵BE=CF,∴BE+EC=CF+EC.即BC=EF.又∵∠B=∠DEF,∠ACB=∠F,∴△ABC≌△DEF,∴AB=DE.∵∠B=∠DEF,∴AB∥DE.∴四边形ABED是平行四边形.
    5.如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.
    解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF.又∵AB=AC=10,∴∠B=∠C.∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴DE+DF=AF+FC=AC=10.
    6.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示: AP=_____; DP=________; BQ=________;CQ=________;
    (2)当t为何值时,四边形APQB是平行四边形?
    解:根据题意有AP=tcm,CQ=2tcm,PD=(12-t)cm,BQ=(15-2t)cm.∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形.∴t=15-2t,解得t=5.∴t=5s时四边形APQB是平行四边形.
    解:∵AP=tcm,CQ=2tcm,AD=12cm,∴PD=AD-AP=(12-t)cm,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.即12-t=2t,解得t=4,∴当t=4s时,四边形PDCQ是平行四边形.
    (3)当t为何值时,四边形PDCQ是平行四边形?

    相关课件

    初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定授课课件ppt:

    这是一份初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定授课课件ppt,共27页。PPT课件主要包含了学习目标,证明方法2,符号语言,链接中考,∠DAF∠E,DFCF,tcm,12-tcm,15-2tcm,平行四边形的判定等内容,欢迎下载使用。

    初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定课堂教学ppt课件:

    这是一份初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定课堂教学ppt课件,共13页。PPT课件主要包含了大家齐动手,行家伸伸手,平行四边形的判别方法,百炼成金,应用与拓展,想一想,尺规画平行四边形,众说纷纭,学海拾贝,收获与困惑等内容,欢迎下载使用。

    初中数学18.1.2 平行四边形的判定课前预习ppt课件:

    这是一份初中数学18.1.2 平行四边形的判定课前预习ppt课件,共14页。PPT课件主要包含了学习目标,对边相等,对角相等,对角线互相平分,新课导入,知识讲解,平行四边形的判定定理,知识点1,能否证明,即学即练等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map