年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT

    立即下载
    加入资料篮
    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT第1页
    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT第2页
    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT第3页
    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT第4页
    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT第5页
    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT第6页
    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT第7页
    【精品】人教版 八年级下册数学 18.2.1 第2课时 矩形的判定 课件PPT第8页
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级下册18.2.1 矩形优质课ppt课件

    展开

    这是一份人教版八年级下册18.2.1 矩形优质课ppt课件,共29页。PPT课件主要包含了复习引入,导入新课,对角线,对边平行且相等,四个角都是直角,对角线互相平分且相等,讲授新课,证一证,归纳总结,又∵OAOD等内容,欢迎下载使用。
    1.经历矩形判定定理的猜想与证明过程,理解并掌握 矩形的判定定理.(重点)2.能应用矩形的判定解决简单的证明题和计算题.(难点)
    问题1 矩形的定义是什么?
    有一个角是直角的平行四边形叫做矩形.
    问题2 矩形有哪些性质?
    思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具的任意一种就可以解决问题,这是为什么呢?
    这节课我们一起探讨矩形的判定吧.
    类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.
    问题1 除了定义以外,判定矩形的方法还有没有呢?
    矩形是特殊的平行四边形.
    类似地,那我们研究矩形的性质的逆命题是否成立.
    问题2 上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?
    我猜想:对角线相等的平行四边形是矩形.
    不对,等腰梯形的对角线也相等.
    不对,矩形是特殊的平行四边形,所以它的对角线不仅相等且平分.
    思考 你能证明这一猜想吗?
    已知:如图,在□ABCD中,AC , DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB, ∴ △ABC≌△DCB , ∴∠ABC = ∠DCB. ∵AB∥CD, ∴∠ABC + ∠DCB = 180°, ∴ ∠ABC = 90°, ∴ □ ABCD是矩形(矩形的定义).
    矩形的判定定理:对角线相等的平行四边形是矩形.
    几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.
    思考 数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你现在知道为什么了吗?
    对角线相等的平行四边形是矩形.
    解:∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形,
    又∵∠OAD=50°,
    例2 如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.
    ∵四边形ABCD是矩形,
    ∴AC=BD(矩形的对角线相等),
    AO=BO=CO=DO(矩形的对角线互相平分),
    ∵ AE=BF=CG=DH,
    ∴OE=OF=OG=OH,
    ∴四边形EFGH是平行四边形,
    ∵EO+OG=FO+OH,
    即EG=FH,∴四边形EFGH是矩形.
    1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是 (  )
    A.AC=BD B.AC=BCC.AD=BC D.AB=AD
    2.如图 , ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?
    解:四边形ABCD是矩形.理由如下:∵四边形ABCD是平行四边形, ∴ AO=CO,DO=BO.又∵∠1= ∠2,∴AO=BO,∴AC=BD,∴四边形ABCD是矩形.
    问题1 上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?
    逆命题:四个角是直角的四边形是矩形.
    问题2 至少有几个角是直角的四边形是矩形?
    猜测:有三个角是直角的四边形是矩形.
    已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.
    证明:∵ ∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°,∴AD∥BC,AB∥CD.∴四边形ABCD是平行四边形,∴四边形ABCD是矩形.
    矩形的判定定理:有三个角是直角的四边形是矩形.
    几何语言描述:在四边形ABCD中,∵ ∠A=∠B=∠C=90°,∴四边形ABCD是矩形.
    思考 一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?
    有三个角是直角的四边形是矩形.
    例3 如图, □ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形.
    证明:在□ ABCD中,AD∥BC,
    ∴∠DAB+∠ABC=180°.
    ∵AE与BG分别为∠DAB、∠ABC的平分线,
    ∴四边形EFGH是矩形.
    同理可证∠AED=∠EHG=90°,
    例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.
    证明:在△ABC中,AB=AC,AD⊥BC, ∴∠BAD=∠DAC,即∠DAC= ∠BAC.又∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE= ∠CAM,∴∠DAE=∠DAC+∠CAE= (∠BAC+∠CAM)=90°.又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.
    在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是 (  )A.测量对角线是否相等 B.测量两组对边是否分别相等 C.测量一组对角是否都为直角 D.测量其中三个角是否都为直角
    1.下列各句判定矩形的说法是否正确?
    (1)对角线相等的四边形是矩形;
    (2)对角线互相平分且相等的四边形是矩形;
    (3)有一个角是直角的四边形是矩形;
    (5)有三个角是直角的四边形是矩形;
    (6)四个角都相等的四边形是矩形;
    (7)对角线相等,且有一个角是直角的四边形是矩形;
    (4)有三个角都相等的四边形是矩形;
    (8)一组对角互补的平行四边形是矩形.
    2.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、 ∠MCA、 ∠ ACN、∠CAF的平分线,则四边形ABCD是 ( ) A.梯形 B.平行四边形 C.矩形 D.不能确定
    3.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.
    证明:四边形ABCD中,AB∥CD,∠BAD=90°,∴∠ADC=90°.又∵△ABC中,AB=5,BC=12,AC=13,满足132=52+122,即∴△ABC是直角三角形,且∠B=90°,∴四边形ABCD是矩形.
    4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.
    证明:∵四边形ABCD为平行四边形, ∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴四边形NDMB为平行四边形,MN=BD, ∴平行四边形NDMB为矩形.
    5.如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.
    证明:∵AB=AC,AD⊥BC,∴∠B=∠ACB,BD=DC.∵AE是∠BAC的外角平分线,∴∠FAE=∠EAC.∵∠B+∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC, ∴AE∥CD.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.
    又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.
    6.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?
    解:设经过xs,四边形PQCD为平行四边形, 即PD=CQ, 所以24-x=3x, 解得x=6. 即经过6s,四边形PQCD 是平行四边形.
    (2)经过多长时间,四边形PQBA是矩形?
    解:设经过ys,四边形PQBA为矩形,即AP=BQ,∴y=26-3y,解得y=6.5,即经过6.5s,四边形PQBA是矩形.

    相关课件

    初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.1 矩形教案配套课件ppt:

    这是一份初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.1 矩形教案配套课件ppt,共35页。PPT课件主要包含了情境导入,探索新知,几何语言,归纳总结,对应训练,线段关系,矩形ABCD,利用勾股定理,经典例题,变式训练等内容,欢迎下载使用。

    初中数学人教版八年级下册18.2.1 矩形示范课课件ppt:

    这是一份初中数学人教版八年级下册18.2.1 矩形示范课课件ppt,共18页。PPT课件主要包含了课堂引入,矩形有哪些性质,四个角都是直角,对角线相等,猜想结论,新知总结,应用举例,随堂练习,基础练习题,又∠C90°等内容,欢迎下载使用。

    数学八年级下册18.2.1 矩形练习题课件ppt:

    这是一份数学八年级下册18.2.1 矩形练习题课件ppt,共11页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map