- 1.4.8 碰撞 教案 教案 5 次下载
- 2.1.5 静电场的能量 教案 教案 4 次下载
- 1.5.1 简谐振动 教案 教案 5 次下载
- 1.5.4 振动的合成 教案 教案 5 次下载
- 2.1.1 库仑定律和电场强度 教案 教案 4 次下载
1.5.3 振动能量与共振
展开§5.3 振动能量与共振
5. 3.1、简谐振动中的能量
以水平弹簧振子为例,弹簧振子的能量由振子的动能和弹簧的弹性势能构成,在振动过程中,振子的瞬时动能为:
振子的瞬时弹性势能为:
振子的总能量为:
简谐振动中,回复力与离开平衡位置的位移x的比值k以及振幅A都是恒量,即是恒量,因此振动过程中,系统的机械能守恒。
如以竖直弹簧振子为例,则弹簧振子的能量由振子的动能、重力势能和弹簧的弹性势能构成,尽管振动过程中,系统的机械能守恒,但能量的研究仍比较复杂。由于此时回复力是由弹簧的弹力和重力共同提供的,而且是线性力(如图5-3-1),因此,回复力做的功(图中阴影部分的面积)也就是系统瞬时弹性势能和重力势能之和,所以类比水平弹簧振子瞬时弹性势能表达式,式中x应指振子离开平衡位置的位移,则就是弹性势能和重力势能之和,不必分开研究。
简谐振动的能量还为我们提供了求振子频率的另一种方法,这种方法不涉及振子所受的力,在力不易求得时较为方便,将势能写成位移的函数,即,。
另有
也可用总能量和振幅表示为
5.3.2、阻尼振动
简谐振动过程的机械能是守恒的,这类振动一旦开始,就永不停止,是一种理想状态。实际上由于摩擦等阻力不可完全避免,在没有外来动力的条件下,振动总会逐渐减弱以致最后停息。这种振幅逐渐减小的振动,称为阻尼振动。阻尼振动不是谐振动。
①振动模型与运动规律
如图5-3-2所示,为考虑阻尼影响的振动模型,c为阻尼器,粘性阻尼时,阻力R=-cv,设m运动在任一x位置,由有
分为 (17)
式中
这里参考图方法不再适用,当 C 较小时,用微分方程可求出振体的运动规律,如图4-22所示。
②阻尼对振动的影响
由图5-3-3可见,阻尼使振幅逐渐衰减,直至为零。同时也伴随着振动系统的机械能逐渐衰减为零。
此外,愈大,即阻尼愈大,振幅衰减愈快。而增大质量m可使n减小。所以,为了减小阻尼,单摆的重球及弹簧振子往往选用重球。
③常量阻力下的振动
例1、如图5-3-4所示,倔强系数为250g/cm的弹簧一端固定,另端连结一质量为30g的物块,置于水平面上,摩擦系数,现将弹簧拉长1cm后静止释放。试求:(1)物块获得的最大速度;(2)物块经过弹簧原长位置几次后才停止运动。
解:振体在运动中所受摩擦阻力是与速度方向相反的常量力,并不断耗散系统的机械能,故不能像重力作用下那样,化为谐振动处理。
(1)设首次回程中,物块运动至弹簧拉力等于摩擦力的x位置时,达最大速度。
由 ,
再由能量守恒:
代入已知数据得
(2)设物体第一次回程中,弹簧的最大压缩量为,则
再设物体第一次返回中,弹簧的最大拉伸量为,则
可见振体每经过一次弹簧原长位置,振幅减小是相同的,且均为
而
故物体经过16次弹簧原长位置后,停止在该处右方。
5.3.3 受迫振动——在周期性策动外力作用下的振动。
例如:扬声器的发声,机器及电机的运转引起的振动。
1、振动模型及运动规律
如图5-3-5所示,为策动外力作用下的振动模型。其中,阻力R=-cv,为常见的粘性阻尼力。
策动力F=Hcospt,为简谐力时。
由,有化为标准标式
式中 ,,
由微分方程理论可求得振子的运动规律
(2)受迫振动的特性
在阻尼力较小的条件下,简谐策动力引起的振动规律如图5-3-6所示。在这个受迫振动过程由两部分组成:一部分是按阻尼系统本身的固有频率所作的衰减振动,称为瞬态振动(图(a));另一部分按策动力频率所作的稳定振动(图(b))。在实际问题中,瞬态振动很快消失,稳态振动显得更加重要。稳态振动的频率与系统本身的固有频率无关,其振幅与初位相也不由初始条件确定,而与策动频率p密切相关。
5.3.4、共振—当策动力频率p接近于系统的固有频率时受迫振动振幅出现最大值的现象。
如图5-3-7所示的一组曲线,描述了不同阻尼系统的稳态振幅A随策动力频率p改变而引起的变化规律。由图可见:
1、当p接近时振幅最大,出现共振。
2、阻尼越小,共振越大。
3、时,振幅就是静力偏移,即
4、p>>时,振体由于惯性,来不及改变运动,处于静止状态。
高中物理人教版 (2019)选择性必修 第一册第二章 机械振动6 受迫振动 共振教案: 这是一份高中物理人教版 (2019)选择性必修 第一册第二章 机械振动6 受迫振动 共振教案,共8页。
高中物理人教版 (2019)选择性必修 第一册6 受迫振动 共振教案设计: 这是一份高中物理人教版 (2019)选择性必修 第一册6 受迫振动 共振教案设计,共7页。教案主要包含了新课引入,新课教学,共振现象及其应用等内容,欢迎下载使用。
人教版 (2019)选择性必修 第一册6 受迫振动 共振一等奖教案: 这是一份人教版 (2019)选择性必修 第一册6 受迫振动 共振一等奖教案,共9页。教案主要包含了教材分析,教学目标与核心素养,物理观念,科学思维,科学探究,科学态度与责任,教学重点与难点,教学重点等内容,欢迎下载使用。