所属成套资源:2018版高考数学(人教a版理科)一轮复习真题演练集训(含答案)
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-3 word版含答案 试卷 0 次下载
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-5 word版含答案 试卷 0 次下载
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-6 word版含答案 试卷 0 次下载
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-7 word版含答案 试卷 0 次下载
- 2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-8 word版含答案 试卷 0 次下载
2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-2 word版含答案
展开
这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-2 word版含答案,共2页。试卷主要包含了端午节吃粽子是我国的传统习俗等内容,欢迎下载使用。
www.ks5u.com 真题演练集训 1.(1)求7C-4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.(1)解:7C-4C=7×-4×=0.(2)证明:当n=m时,结论显然成立.当n>m时,(k+1)C==(m+1)·=(m+1)C,k=m+1,m+2,…,n.又C+C=C,所以(k+1)C=(m+1)(C-C),k=m+1,m+2,…,n.因此,(m+1)C+(m+2)C+(m+3)C+…+(n+1)C=(m+1)C+=(m+1)C+(m+1)=(m+1)C.2.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.(2)X的所有可能值为0,1,2,且P(X=0)==,P(X=1)==,P(X=2)==.综上知,X的分布列为X012P故E(X)=0×+1×+2×=. 课外拓展阅读 特殊元素(位置)优先安排法解排列组合问题 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为( )A.360 B.288 C.216 D.96 分两步计算:第一步,计算满足3位女生中有且只有两位相邻的排法,将3位女生分成两组,插空到排好的3位男生中;第二步,在第一步的结果中排除甲站两端的排法. 3位男生排成一排有A种排法,3名女生分成两组.其中2名排好看成一个整体有CA种排法,这两组女生插空到3名男生中有A种插法,于是6位同学排成一排且3位女生中有且只有两位女生相邻的排法有CAAA=432(种).其中男生甲在排头或排尾时,其余两男生的排法有A种,两组女生插到2名男生中有A种插法.于是男生甲在排头或排尾,3位女生中有且只有两位女生相邻的排法有2AACA=144(种).所以满足条件的排法共有432-144=288(种).故选B. B方法点睛该题涉及两个特殊条件:“男生甲不站两端”与“3位女生中有且只有两位女生相邻”,显然对于“男生甲不站两端”这类问题可利用间接法求解,将其转化为“男生甲站两端”的问题,要优先安排男生甲,然后再安排其他元素;对于“三位女生中有且只有两位女生相邻”中的相邻问题利用捆绑法;而不相邻问题可以利用插空法求解.
相关试卷
这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-9 word版含答案,共7页。
这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-8 word版含答案,共3页。
这是一份2018版高考数学(人教a版理科)一轮复习真题演练集训:第十一章 计数原理、概率、随机变量及其分布 11-7 word版含答案,共4页。