数学八年级下册17.1 勾股定理教案
展开§17.1 勾股定理的应用(二)
学习目标:会用勾股定理解决较综合的问题。
学习重点:勾股定理的综合应用。
学习难点:勾股定理的综合应用。
导学过程
一、完成学习目标
1、启发自学
复习勾股定理的内容。本节课探究勾股定理的综合应用。
2、试练讨论
1、△ABC中,AB=AC=25cm,高AD=20cm,则BC= ,S△ABC= 。
2、△ABC中,若∠A=2∠B=3∠C,AC=cm,则∠A= 度,∠B= 度,∠C= 度,BC= ,S△ABC= 。
3、△ABC中,∠C=90°,AB=4,BC=,CD⊥AB于D,则AC= ,CD= ,BD= ,AD= ,S△ABC= 。
4、已知:如图,△ABC中,AB=26,BC=25,AC=17,
求S△ABC。
3、穿插讲解
例1(补充)1、已知:在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD=,
求线段AB的长。
分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
要求学生能够自己画图,并正确标图。引导学生分析:欲求AB,可由AB=BD+CD,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。或欲求AB,可由,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6。
例2(补充)已知:如图,△ABC中,AC=4,∠B=45°,∠A=60°,根据题设可知什么?
分析:由于本题中的△ABC不是直角三角形,所以根据题设只能直接求得∠ACB=75°。在学生充分思考和讨论后,发现添置AB边上的高这条辅助线,就可以求得AD,CD,BD,AB,BC及S△ABC。让学生充分讨论还可以作其它辅助线吗?为什么?
小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。并指出如何作辅助线?
例3(补充)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。
解:延长AD、BC交于E。
∵∠A=∠60°,∠B=90°,∴∠E=30°。
∴AE=2AB=8,CE=2CD=4,
∴BE2=AE2-AB2=82-42=48,BE==。
∵DE2= CE2-CD2=42-22=12,∴DE==。
∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=
小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。
例4(探究3)
分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
变式训练:在数轴上画出表示的点。
一、 小结点评
例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题。使学生清楚作辅助线不能破坏已知角。
例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。在转化的过程中注意条件的合理运用。让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。
例4(探究3)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
三、达标检测
1、在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD=,AB= 。
2、在Rt△ABC中,∠C=90°,S△ABC=30,c=13,且a<b,则a= ,b= 。
3(选做题)、已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=,
求(1)AB的长;(2)S△ABC。
4(选做题)、在数轴上画出表示-的点。
教学反思:
初中数学人教版八年级下册17.1 勾股定理教学设计: 这是一份初中数学人教版八年级下册17.1 勾股定理教学设计,共7页。教案主要包含了判断,1.在Rt△ABC中,,,,,课堂练习,作业等内容,欢迎下载使用。
初中17.1 勾股定理教学设计: 这是一份初中17.1 勾股定理教学设计,共13页。教案主要包含了复习提问,引入,新课,课堂小结,课堂练习,作业等内容,欢迎下载使用。
人教版八年级下册第十七章 勾股定理17.1 勾股定理第2课时教案及反思: 这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理第2课时教案及反思,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。