所属成套资源:人教版数学九年级下册全册教案
初中数学人教版九年级下册第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第1课时教案
展开
这是一份初中数学人教版九年级下册第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第1课时教案,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。
27.2.1 相似三角形的判定第1课时 教学目标【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力.教学重难点【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.课前准备无教学过程一、情境导入,初步认识问题1 相似多边形的性质是否也适用于相似三角形呢?问题2 如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC与△A1B1C1的相似比为k,那么△A1B1C1与△ABC的相似比也是k吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容.二、思考探究,获取新知问题1 如图,任意画两条直线l1,l2,再画三条与l1,l2相交的平行线l3,l4,l5分别度量AB,BC,DE,EF长度,则相等吗?【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:问题2 如图,当l1//l2//l3时,在(1)中是否仍有在(2)中是否仍有【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC,DE分别交AB、AC于D、E,则△ABC与△ADE能相似吗?为什么?问题4 如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么 ? 【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来. 2.如图D为△ABC中BC边的中点,E为AD 中点,连接并延长BE交AC于F.过E作EG//AC交BC于G.(1) 求的值;(2)求的值;(3)求的值.3.如图,已知在△ABC中,DE//BC,AD=EC,BD=1cm,AE=4cm,BC=5cm,求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE~△ABC,△CEF~△CAB, △ADE~△EFC.2.解:(1)∵EG//AC,∴△DGE~△DCA,∴.(2)∵EG//AC,E是AD的中点,∴G是CD的中点,即CG=DG.又D是BC的中点,∴BD=CD,∴BG=3CG,BC=4CG,∴ . ∵EG//FC, ∴△BEG~△BFC,∴.(3)过D点作DH//CF,交BF于H.易得DH=AF,∴.3.解:∵DE//BC,∴,又AD=CE,∴AD2=4,∴AD=2,∴AB=3.由DE//BC可知△ADE~△ABC,∴.四、师生互动,课堂小结1.这节课你学到了哪些知识?2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.课后作业完成创优作业中本课时的“课时作业”部分.教学反思本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.
相关教案
这是一份初中数学人教版九年级下册27.2.1 相似三角形的判定第1课时教案,共7页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
这是一份初中数学人教版九年级下册27.2.1 相似三角形的判定教案,共5页。教案主要包含了作业布置,拓展题等内容,欢迎下载使用。
这是一份数学九年级下册27.2.1 相似三角形的判定教案,共10页。教案主要包含了教学目标,重点,例题的意图,课堂引入,例题讲解,课堂练习,课后练习等内容,欢迎下载使用。