高中数学2.5 平面向量应用举例教案
展开2.5.1平面几何中的向量方法
教学目的:
1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;
2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程:
一、复习引入:
1. 两个向量的数量积:
2. 平面两向量数量积的坐标表示:
3. 向量平行与垂直的判定:
4. 平面内两点间的距离公式:
5. 求模:
练习
教材P.106练习第1、2、3题.;教材P.107练习第1、2题.
二、讲解新课:
例1. 已知AC为⊙O的一条直径,∠ABC为圆周角.求证:∠ABC=90o.
证明:设
例2. 如图,AD,BE,CF是△ABC的三条高.求证: AD,BE,CF相交于一点.
例3. 平行四边形是表示向量加法与减法的几何模型.如图,
你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?
思考1:
如果不用向量方法,你能证明上述结论吗?
思考2:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
例4.如图,□ ABCD中,点E、F分别是AD、DC边的中点,BE、 BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
课堂小结
用向量方法解决平面几何的“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
课后作业
- 阅读教材P.109到P.111; 2. 《习案》作业二十五.
高中人教版新课标A2.5 平面向量应用举例教案: 这是一份高中人教版新课标A2.5 平面向量应用举例教案
高中数学人教版新课标A必修42.5 平面向量应用举例教学设计: 这是一份高中数学人教版新课标A必修42.5 平面向量应用举例教学设计
[教案精品]新课标高中数学人教A版必修四全册教案2.5.2向量在物理中的应用举例: 这是一份高中人教版新课标A本册综合教学设计及反思,共3页。教案主要包含了复习引入,讲解新课,课堂小结,课后作业等内容,欢迎下载使用。