必修2第六章 万有引力与航天1.行星的运动课时练习
展开
这是一份必修2第六章 万有引力与航天1.行星的运动课时练习,共7页。试卷主要包含了关于日心说被人们所接受的原因是等内容,欢迎下载使用。
1.16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个基本论点,这四个论点目前看存在缺陷的是( )
A.宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动
B.地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运动的同时还跟地球一起绕太阳运动
C.天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象
D.与日地距离相比,其他恒星离地球都十分遥远,比日地间距离大得多
解析 天文学家开普勒在认真整理了第谷的观测资料后,在哥白尼学说的基础上,抛弃了圆轨道的说法,提出了以大量观测资料为依据的开普勒三定律,揭示了天体运动的真相,所有行星围绕太阳运动的轨道为椭圆,太阳处于所有椭圆的一个焦点上,整个宇宙是在不停运动的.故A、B、C选项的说法存在缺陷.
答案 ABC
2.关于日心说被人们所接受的原因是( )
A.以地球为中心来研究天体的运动有很多无法解决的问题
B.以太阳为中心来研究天体的运动,许多问题都可以解决,行星运动的描述也变得简单了
C.地球是围绕太阳运转的
D.太阳总是从东边升起,从西边落下
解析 日心说的观点主要是以太阳为参考系来研究其他行星的运动,这样其他行星的运动形式变得简单,便于描述和研究.而地心说以地球为参考系,来研究太阳及其他星体的运动,运动形式非常复杂,不便于描述和研究,故B选项正确.
答案 B
3.关于天体的运动,以下说法中正确的是( )
A.天体的运动和地面上物体的运动遵循不同的规律
B.天体的运动是最完美、最和谐的匀速圆周运动
C.太阳从东边升起,西边落下,所以太阳绕地球运动
D.太阳系中所有的行星都绕太阳运动
解析 天体的运动与地面上物体的运动都遵循相同的物理规律,都遵守牛顿运动定律等,A错;天体的运动轨道都是椭圆,而非圆,只是椭圆比较接近圆,有时将椭圆当作圆处理,但椭圆毕竟不是圆,B错;太阳从东边升起,又从西边落下,是地球自转的结果,C错.
答案 D
4.在太阳系里有一千多颗小行星,某一颗行星绕日运行的半径是金星绕日运行半径的4倍,则两星绕日运行的周期之比为( )
A.1:16 B.eq \r(16):1
C.8:1 D.1:1
解析 eq \f(GMm,r2)=eq \f(m4π2r,T2),得T2=eq \f(4π2r3,GM)
eq \f(T\\al(2,1),T\\al(2,2))=eq \f(r\\al(3,1),r\\al(3,2))=eq \f(43,1),eq \f(T1,T2)=eq \f(8,1),故C正确.
答案 C
5.关于行星绕太阳运动的下列说法中正确的是( )
A.所有行星都在同一椭圆轨道上绕太阳运动
B.行星绕太阳运动时太阳位于行星轨道的中心处
C.离太阳越近的行星的运动周期越长
D.所有行星的轨道半长轴的三次方跟公转周期的二次方的比值都相等
解析 所有的行星绕太阳运动的轨道都是椭圆,但不是同一轨道,太阳处在椭圆的一个焦点上,故A、B错;所有行星的轨道半长轴的三次方跟公转周期的二次方的比值都相等,离太阳越近的行星,其运动周期越短,故C项错,D项对.
答案 D
6.关于开普勒行星运动的公式eq \f(R3,T2)=k,以下理解正确的是( )
A.k是一个与行星无关的量
B.若地球绕太阳运转轨道的半长轴为R地,周期为T地;月球绕地球运转轨道的半长轴为R月,周期为T月,则eq \f(R\\al(3,地),T\\al(2,地))=eq \f(R\\al(3,月),T\\al(2,月))
C.T表示行星运动的自转周期
D.T表示行星运动的公转周期
解析 eq \f(R3,T2)=k是指围绕太阳的行星或者指围绕某一行星的卫星的周期与半径的关系,T是公转周期,k是一个与环绕星体无关的量,只与被环绕的中心天体有关,中心天体不同,其值不同,只有围绕同一天体运动的行星或卫星,它们半长轴的三次方与公转周期的二次方之比才是同一常数.故eq \f(R\\al(3,地),T\\al(2,地))≠eq \f(R\\al(3,月),T\\al(2,月)).
答案 AD
7.
某行星绕太阳运动的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的速率大,则太阳位于( )
A.F2 B.A
C.F1 D.B
解析 根据开普勒第二定律,行星和太阳的连线在相等的时间内扫过相等的面积,故行星在近日点的运行速率大于在远日点的速率,由题意可知行星在A点的速率大于在B点的速率,所以太阳位于F2位置,故选项A正确.
答案 A
8.某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球轨道半径的1/3,则此卫星运行的周期大约是(d为“天”)( )
A.1 d~4 d之间 B.4 d~8 d之间
C.8 d~16 d之间 D.16 d~20 d之间
解析 设人造卫星的轨道半径为R1,周期为T1,月球绕地球转动的轨道半径为R2,周期为T2,由开普勒第三定律可知
eq \f(R\\al(3,1),T\\al(2,1))=eq \f(R\\al(3,2),T\\al(2,2))
eq \f(T1,T2)= eq \r(\f(R\\al(3,1),R\\al(3,2)))= eq \r(\f(1,27))=eq \f(\r(3),9)
T1=eq \f(\r(3),9)T2 T2≈30(天)
故T1=eq \f(10\r(3),3)≈5(天),故B选项正确.
答案 B
9.
在天文学上,春分、夏至、秋分、冬至将一年分为春、夏、秋、冬四季.如图所示,从地球绕太阳的运动规律入手,下列判断正确的是( )
A.在冬至日前后,地球绕太阳的运行速率较大
B.在夏至日前后,地球绕太阳的运行速率较大
C.春夏两季与秋冬两季时间相等
D.春夏两季比秋冬两季时间长
解析 冬至日前后,地球位于近日点附近,夏至日前后地球位于远日点附近,由开普勒第二定律可知近日点速率最大,故A对、B错;春夏两季平均速率比秋冬两季平均速率小,又因所走路程基本相等,故春夏两季时间长,春夏两季一般在186天左右,而秋冬两季只有179天左右,C错、D对.
答案 AD
10.如图所示,飞船沿半径为R的圆周绕地球运动,其周期为T,地球半径为R0,若飞船要返回地面,可在轨道上某点A处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,求飞船由A点到B点所需要的时间.
解析 当飞船做半径为R的圆周运动时,由开普勒第三定律eq \f(R3,T2)=k,
当飞船返回地面时,从A处降速后沿椭圆轨道至B,设飞船沿椭圆轨道运动的周期为T′,椭圆的半长轴为a,则eq \f(a3,T′2)=k
可解得T′= eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(\f(a,k)))3)·T
由于a=eq \f(R+R0,2),由A到B的时间为t=eq \f(T′,2)
可知t=eq \f(T′,2)=eq \f(1,2) eq \r(\f(\b\lc\(\rc\)(\a\vs4\al\c1(\f(R+R0,2)))3,R3))·T
=eq \f(R+R0T,4R)· eq \r(\f(R+R0,2R))
答案 eq \f(R+R0T,4R)· eq \r(\f(R+R0,2R))
11.地球绕太阳运行的轨道半长轴为1.50×1011 m,周期为365天,月球绕地球运行的轨道半长轴为3.8×108 m,周期为27.3天.求:
(1)对于绕太阳运行的行星eq \f(a3,T2)的值;
(2)对于绕地球运行的卫星eq \f(a3,T2)的值.
解析 (1)根据开普勒第三定律eq \f( a3,T2)=k.则对于绕太阳运行的行星eq \f(a3,T2)=eq \f(1.50×10113,365×24×60×602) m3/s2=3.4×1018 m3/s2
(2)对于绕地球运行的卫星
eq \f(a3,T2)=eq \f(3.8×1083,27.3×24×60×602) m3/s2=1.0×1013 m3/s2
答案 (1)3.4×1018 m3/s2
(2)1.0×1013m3/s2
相关试卷
这是一份高中物理人教版 (2019)必修 第二册1 行星的运动优秀一课一练,文件包含71《行星的运动》分层练习原卷版-人教版高中物理必修二docx、71《行星的运动》分层练习解析版-人教版高中物理必修二docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份高中物理人教版 (2019)必修 第二册1 行星的运动巩固练习
这是一份人教版 (2019)必修 第二册1 行星的运动同步训练题,共4页。