初中数学人教版九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程精品第3课时同步练习题
展开21.3 实际问题与一元二次方程
第3课时 用一元二次方程解决几何图形问题
.
1.面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与__ ___的内在联系,根据__ __公式列出一元二次方程.
2.一个正方形的边长增加了3 cm,面积相应增加了39 cm2,则原来这个正方形的边长为__ ___cm.
.
知识点1:一般图形的面积问题
1.一个面积为35 m2的矩形苗圃,它的长比宽多2 m,则这个苗圃的长为( )
A.5 m B.6 m C.7 m D.8 m
2.用一条长40 cm的绳子围成一个面积为64 cm2的长方形.设长方形的长为x cm,则可列方程为( )
A.x(20+x)=64 B.x(20-x)=64
C.x(40+x)=64 D.x(40-x)=64
3.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两条直角边长分别为__ _ _.
4.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.
知识点2:边框与通道问题
5.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上花草.若种植花草的面积为540 m2,求道路的宽.如果设道路的宽为x m,根据题意,所列方程正确的是( )
A.(20-x)(32-x)=540
B.(20-x)(32-x)=100
C.(20+x)(32-x)=540
D.(20-x)(32+x)=540
,
第5题图) ,第6题图)
6.如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,若设道路宽为x米,则根据题意可列出方程__ ___.
7.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,若相框内部的面积为280 cm2,求相框边的宽度.
.
8.从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48 m2,则原来这块木板的面积是( )
A.100 m2 B.64 m2
C.121 m2 D.144 m2
9.如图,正方形ABCD的边长是1,E,F分别是BC,CD上的点,且△AEF是等边三角形,则BE的长为( )
A.2- B.2+
C.2+ D.-2
,
,第9题图) 第11题图)
10.在一个矩形地毯的四周镶有宽度相同的花边,已知地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米,则花边的宽为__ ___米.
11.如图,已知点A是一次函数y=x-4图象上的一点,且矩形ABOC的面积等于3,则点A的坐标为__ __.
12.如图是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600平方米,那么花园各角处的正方形观光休息亭的边长为多少米?
13.小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?
(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.
.
14.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.
(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?
(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?
(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.
第3课时 用一元二次方程解决几何图形问题
.
1.面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与__已知量___的内在联系,根据__面积(体积)___公式列出一元二次方程.
2.一个正方形的边长增加了3 cm,面积相应增加了39 cm2,则原来这个正方形的边长为__5___cm.
.
知识点1:一般图形的面积问题
1.一个面积为35 m2的矩形苗圃,它的长比宽多2 m,则这个苗圃的长为( C )
A.5 m B.6 m C.7 m D.8 m
2.(2014·襄阳)用一条长40 cm的绳子围成一个面积为64 cm2的长方形.设长方形的长为x cm,则可列方程为( B )
A.x(20+x)=64 B.x(20-x)=64
C.x(40+x)=64 D.x(40-x)=64
3.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两条直角边长分别为__2_cm,7_cm___.
4.(2014·湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.
解:设AB= x m,则BC=(50-2x) m,根据题意得x(50-2x)=300,解得x1=10,x2=15,当x=10,BC=50-2×10=30>25,故x1=10不合题意,舍去,∴x=15,则可以围成AB为15 m,BC为20 m的矩形
知识点2:边框与通道问题
5.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上花草.若种植花草的面积为540 m2,求道路的宽.如果设道路的宽为x m,根据题意,所列方程正确的是( A )
A.(20-x)(32-x)=540
B.(20-x)(32-x)=100
C.(20+x)(32-x)=540
D.(20-x)(32+x)=540
,第5题图) ,第6题图)
6.(2014·兰州)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,若设道路宽为x米,则根据题意可列出方程__(22-x)(17-x)=300___.
7.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,若相框内部的面积为280 cm2,求相框边的宽度.
解:由题意得(26-2x)(20-2x)=280,整理得x2-23x+60=0,解得x1=3,x2=20(不合题意,舍去),则相框边的宽度为3 cm
.
8.从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48 m2,则原来这块木板的面积是( B )
A.100 m2 B.64 m2
C.121 m2 D.144 m2
9.如图,正方形ABCD的边长是1,E,F分别是BC,CD上的点,且△AEF是等边三角形,则BE的长为( A )
A.2- B.2+
C.2+ D.-2
,
,第9题图) 第11题图)
10.在一个矩形地毯的四周镶有宽度相同的花边,已知地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米,则花边的宽为__1___米.
11.如图,已知点A是一次函数y=x-4图象上的一点,且矩形ABOC的面积等于3,则点A的坐标为__(3,-1)或(1,-3)___.
12.如图是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600平方米,那么花园各角处的正方形观光休息亭的边长为多少米?
解:设正方形观光休息亭的边长为x米,依题意得(100-2x)(50-2x)=3600,整理得x2-75x+350=0,解得x1=5,x2=70,∵x2=70>50,不合题意,舍去,∴x=5,即矩形花园各角处的正方形观光休息亭的边长为5米
13.小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?
(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.
解:(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(10-x) cm,由题意得x2+(10-x)2=58,解得x1=3,x2=7,4×3=12,4×7=28,所以小林应把绳子剪成12 cm和28 cm的两段 (2)假设能围成.由(1)得,x2+(10-x)2=48,化简得x2-10x+26=0,因为Δ=b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根,所以小峰的说法是对的
.
14.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.
(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?
(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?
(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.
解:(1)设x秒后,△PBQ的面积等于4 cm2,根据题意得x(5-x)=4,解得x1=1,x2=4.∵当x=4时 ,2x=8>7,不合题意,舍去,∴x=1 (2)设x秒后,PQ的长度等于5 cm,根据题意得(5-x)2+(2x)2=25,解得x1=0(舍去),x2=2,∴x=2 (3)设x秒后,△PBQ的面积等于7 cm2,根据题意得x(5-x)=7,此方程无解,所以不能
数学人教版21.3 实际问题与一元二次方程第3课时精练: 这是一份数学人教版21.3 实际问题与一元二次方程第3课时精练,共3页。
数学九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程第三课时一课一练: 这是一份数学九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程第三课时一课一练,共6页。
初中数学人教版九年级上册21.3 实际问题与一元二次方程第2课时同步测试题: 这是一份初中数学人教版九年级上册21.3 实际问题与一元二次方程第2课时同步测试题,共6页。