搜索
    上传资料 赚现金
    人教A版人教A版(2019)数学必修第一册专题:函数的周期性与对称性学案
    立即下载
    加入资料篮
    人教A版人教A版(2019)数学必修第一册专题:函数的周期性与对称性学案01
    人教A版人教A版(2019)数学必修第一册专题:函数的周期性与对称性学案02
    人教A版人教A版(2019)数学必修第一册专题:函数的周期性与对称性学案03
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版人教A版(2019)数学必修第一册专题:函数的周期性与对称性学案

    展开
    这是一份数学人教A版 (2019)全册综合优秀学案,共16页。

    专题:函数的周期性与对称性
    函数的周期性与对称性核心知识


    重点
    函数的周期性、对称性概念的理解
    难点
    函数的周期性、对称性概念的理解
    考试要求
    考试
    Ø 题型 选择题、填空题、解答题
    Ø 难度 中等、难





    核心知识点一:函数的对称性
    1. 对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称
    2. 轴对称:
    关于轴对称(当时,恰好就是偶函数)
    3. 中心对称
    (1)关于中心对称(当时,恰好就是奇函数)
    (2)函数图象关于点中心对称
    练习1:已知的图象关于点成中心对称,写出该函数几何特征的代数形式。
    解:的图象关于点成中心对称的代数含义:
    取和为的两个值,如和,其对应的函数值的和为
    符号语言:

    核心知识点二:函数的周期性
    1. 定义:设的定义域为,若对,存在一个非零常数,有,则称函数是一个周期函数,称为的一个周期。
    对定义的理解:周期为T的函数的自变量取差为T或-T的两个值和时,对应的函数值相等。

    引例1:若函数满足,怎么理解?
    分析:这个等式从左往右看,可以理解为函数取了两个自变量、,
    当自变量增加2个单位时,对应的函数值相等,这两个自变量的特征也可以理解为差为常数(这里是2或-2)
    根据周期函数概念,我们知道的一个正周期为2

    引例2:若函数满足,则有什么性质呢?
    分析:(1)等式变形为 ①
    ∴的自变量增加2个单位后所得到的函数值的相反数加2与原函数值相等
    (2)据此性质,我们不难得出, ②
    (3)由①②可知,
    这个等式的含义是取和这两个自变量的值的时候,其对应的函数值总相等。因此:的一个正周期为4.

    练习2:已知函数满足下列条件,分别理解其含义
    (1)
    (2)

    分析:(1)自变量增加2个单位,函数值相等,周期为2
    (2)自变量增加两个单位,函数值相反,再增加2个单位,函数值相等,故周期为4
    2. 函数周期性的判定:
    (1):可得为周期函数,其周期
    (2)的周期
    分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:
    所以有:,即周期
    注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期
    (3)的周期
    分析:

    1. 对称性概念的理解:
    (1)关于点对称:函数图象关于点中心对称
    (2)关于直线对称:函数图象关于直线x=a对称
    2. 周期性概念的理解:
    对于这个定义的理解一定不要形式化,要从函数思维逻辑的层面进行分析.要能够从分析其代数特征:函数的自变量分别取和时函数值相等;其几何特征是横坐标相差,纵坐标相等,因此,在间隔个单位的函数图象重复出。


    (答题时间:20分钟)
    1. 若函数fx的图象与函数gx=10x的图象关于直线y=x对称,则f100=( )
    A. 10 B. -1 C. 2 D. -2
    2. 若函数为奇函数,则实数的值为(  )
    A. B. C. D.
    3. 已知函数f(x)=log2|2x-a|(a∈R)满足f(x+1)=f(1-x),则f(0)=( )
    A. 2 B. 1 C. 0 D. -1





    1. 答案:C
    解析:fx与gx关于y=x对称⇒fx为gx的反函数,
    ∴fx=lgx⇒f100=lg100=2.
    2. 答案:B
    解析:为奇函数,。
    当时,,
    又时,,故选B。
    3. 答案:B
    解析:由于f(x+1)=f(1-x),所以x=1是f(x)图象的对称轴
    又y=log2|2x|是偶函数,其图象关于y轴对称
    将y=log2|2x|的图象向右平移1个单位,可得f(x)的图象,则a=2
    所以f(x)=log2|2x-2|,则有f(0)=log2|-2|=1故选:B




    函数的周期性与对称性综合训练

    典例一:周期性应用
    例题1 (1)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为
    f(x)=则f+f=________。
    (2)已知定义在R上的函数f(x)满足f(2)=2-,且对任意的x都有f(x+2)=,则f(2 020)=________。
    (3)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2)。若当x∈[-3,0]时,f(x)=6-x,则f(919)=________
    答案:(1);(2)-2-;(3)6
    解析:(1)由于函数f(x)是周期为4的奇函数,
    所以f+f=f+f=f+f=-f-f=-+sin=。
    (2)由f(x+2)=,得f(x+4)==f(x),所以函数f(x)的周期为4,所以f(2 020)=f(4)。因为f(2+2)=,所以f(4)==-=-2-。
    故f(2 020)=-2-。
    (3)∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),
    ∴f(x)是周期为6的周期函数,∴f(919)=f(153×6+1)=f(1)。
    又f(x)是定义在R上的偶函数,∴f(1)=f(-1)=6,即f(919)=6.

    总结提升:
    函数周期的常见结论:
    设函数y=f(x),x∈R,a>0。
    (1)若f(x+a)=f(x-a),则函数的周期为2a;
    (2)若f(x+a)=-f(x),则函数的周期为2a;
    (3)若f(x+a)=,则函数的周期为2a;
    (4)若f(x+a)=,则函数的周期为2a;
    (5)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;
    (6)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.

    典例二:对称性应用
    例题2 (1)已知函数f(x)满足f(1-x)=f(1+x),当时,函数f(x)单调递减,设a=f(log412),b=f(log133),c=f(log39),则a,b,c的大小关系是( )
    A. a (2)已知函数f(x-1)(x∈R)是偶函数,且函数f(x)的图象关于点(1,0)成中心对称,当x∈[-1,1]时,f(x)=x-1,则f(2019)=(  )
    A. -2 B. -1 C. 0 D. 2
    答案:(1)B (2)D
    解析:(1)根据题意,函数fx满足f1-x=f1+x,则函数fx关于直线x=1对称,
    又由当时,函数fx单调递减,则函数在1,+∞上单调递增,
    又由a=flog412=f-log42=f-12=f52,b=flog133=f-1=f3,
    c=flog39=f2,则有c (2)根据题意,函数f(x-1)(x∈R)是偶函数,则函数f(x)的对称轴为x=-1,则有f(x)=f(-2-x),
    又由函数f(x)的图象关于点(1,0)成中心对称,则f(x)=-f(2-x),则有f(-2-x)=-f(2-x),即f(x+4)=-f(x),
    变形可得f(x+8)=f(x),则函数是周期为8的周期函数,f(2019)=f(3+252×8)=f(3)=-f(-1)=-(-1-1)=2;
    故选D。
    总结提升:
    (1)对称轴常见类型

    ②的图象关于直线对称
    ③的图象关于直线对称
    ④的图象关于直线对称
    (2)对称中心常见类型

    ②的图象关于点对称
    ③的图象关于点对称
    ④的图象关于点对称
    (3)周期与对称性的区分
    若,则具有周期性;
    若,则具有对称性。
    “内同表示周期性,内反表示对称性”。


    1. 对称性:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:
    (1)可利用对称性求得某些点的函数值;
    (2)在作图时可作出一侧图象,再利用对称性得到另一半图象;
    (3)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;
    在中心对称函数中,关于对称中心对称的两个单调区间单调性相同。
    2. 函数周期性:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质。
    (1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值;
    (2)图象:只要做出一个周期的函数图象,其余部分的图象可利用周期性进行“复制+粘贴”;
    (3)单调区间:由于间隔的函数图象相同,所以若在,上单调增(减),则在,上单调增(减);
    (4)对称性:如果一个周期为的函数存在一条对称轴(或对称中心),
    则存在无数条对称轴,其通式为。
    注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法。


    (答题时间:30分钟)

    1. 函数f(x)满足:①y=f(x+1)为偶函数:②在[1,+∞)上为增函数.若x2>-1,且x1+x2<-2,则f(-x1)与f(-x2)的大小关系是(  )
    A. f(-x1)>f(-x2) B. f(-x1) C. f(-x1)≤f(-x2) D. 不能确定
    2. 函数y=f(x)的图象关于直线x=2对称,如图所示,则方程(f(x))2-5f(x)+6=0的所有根之和为( )

    A. 8 B. 6 C. 4 D. 2
    3. 已知函数f(x)在[3,+∞)上单调递减,且f(x+3)是偶函数,则a=f(0.31.1),b=f(30.5),c=f(0)的大小关系是( )
    A. a>b>c B. b>c>a C. c>b>a D. b>a>c
    4. 已知定义在上的奇函数,当时,,则_________。
    5. 已知函数是定义在上的周期为的奇函数,当时,,则______。




    1. 答案:A
    解析:根据题意,函数f(x)满足y=f(x+1)为偶函数,则函数f(x)的对称轴为x=1,则有f(x)=f(2-x),
    又由f(x)在[1,+∞)上为增函数,则f(x)在(-∞,1)上为减函数,
    若x2>-1,则-x2<1,又由x1+x2<-2,则x1+2<-x2<1,
    则有f(x1+2)>f(-x2),又由f(-x1)=f(2+x1),则f(-x1)>f(-x2),故选:A。
    2. 答案:A
    解析:因为(f(x))2-5f(x)+6=0,所以f(x)=2或3,
    由函数y=f(x)的图象得f(x)=2有两个根x1,x2,且两个根关于直线x=2对称,所以x1+x2=2×2=4,
    同理f(x)=3的两个根的和为x3+x4=2×2=4,所以方程(f(x))2-5f(x)+6=0的所有根之和为4+4=8故选:A
    3. 答案:D
    解析:由f(x+3)是偶函数可得其图象的对称轴为x=0,
    所以函数f(x)的图象关于直线x=3对称。
    又函数f(x)在[3,+∞)上单调递减,所以函数f(x)在(-∞,3]上单调递增。
    因为0<0.31.1<30.5<3,所以f0a>c。故选D。
    4. 答案:3
    解析:因为,又为定义在上的奇函数,所以
    5. 答案:
    解析:∵f(x)是定义在R上周期为4的奇函数,
    ∴f()=f(﹣8)=f()=﹣f()
    ∵x∈(0,2)时,f(x)=4x,
    ∴f()=﹣2,
    ∵f(x)是定义在R上周期为4的奇函数,
    ∴f(-2)=f(﹣2+4)=f(2),同时f(﹣2)=﹣f(2),
    ∴f(2)=0,
    ∴f()+f(2)=﹣2。
    故答案为:﹣2。
    函数图象变换

    重点
    掌握函数图象变换的几种方法
    难点
    理解图象变换与函数解析式之间的内在联系
    考试要求
    考试
    Ø 题型 选择题、填空题、解答题
    Ø 难度 中等





    1. 画函数图的方法:
    (1)描点法:为了通过描少量点就能得到比较准确的图象,常需要结合函数的单调性、奇偶性等性质进行讨论;
    (2)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出图象;
    (3)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的函数的要先变形,并注意平移变换与伸缩变换的顺序对变换单位及解析式的影响。
    2. 图象变换
    (1)平移变换
    ①水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到。
    ②竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到。
    (2)对称变换
    ①y=f(-x)与y=f(x)的图象关于y轴对称。
    ②y=-f(x)与y=f(x)的图象关于x轴对称。
    ③y=-f(-x)与y=f(x)的图象关于原点对称。
    ④y=f-1(x)与y=f(x)的图象关于直线y=x对称。
    (3)翻折变换
    ①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象。
    ②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得到y=f(|x|)的图象。
    (4)伸缩变换
    ①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)缩(a<1时)到原来的a倍。
    ②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)缩(a>1时)到原来的。


    典例一:平移变换
    例题1 为了得到函数y=sin 3x+cos 3x的图象,可以将函数y=cos 3x的图象(  )
    A. 向右平移个单位 B. 向右平移个单位
    C. 向左平移个单位 D. 向左平移个单位
    答案:A
    解析:(1)∵y=sin 3x+cos 3x=cos
    =cos,

    【点拨】解答本题的关键是将原函数化为f(x)=Asin(ωx+φ)的形式,再根据图象平移规律求解。

    总结提升:
    ①左右平移
    把函数的全部图象沿轴方向向左()或向右()平移个单位即可得到函数的图象
    ②上下平移
    把函数的全部图象沿轴方向向上()或向下()平移个单位即可得到函数的图象

    典例二:翻折变换
    例题2 画出下列函数的图象。
    (1) (2)
    答案:
    (1)
    (2)

    总结提升:
    ①关于形如的图象画法:
    当时,;当时,。
    为偶函数,关于轴对称,即把时的图象画出,然后时的图象与的图象关于轴对称即可得到所求图象。
    ②关于形如的图象画法
    当时,;当时,
    先画出的全部图象,然后把的图象轴下方全部关于轴翻折上去,原轴上方的图象保持不变,轴下方的图象去掉不要即可得到所求图象。

    典例三:对称变换
    例题3 设求函数的解析式及其定义域,并分别作出它们的图象。
    答案:

    总结提升:
    关于轴对称:
    关于轴对称:
    关于原点对称:

    典例四:伸缩变换
    例题4 将的图象通过怎样的变换可以得到的图象?
    答案:将的解析式变到的解析式,就是将变到4x,因为在这一变化过程中,实质是把x换成6x,所以只需将图象上所有点的横坐标缩小到原来的倍(纵坐标不变),就可得到的图象。
    总结提升:
    (1)将函数的全部图象中的每一点横坐标不变,纵坐标伸长或缩短为原来的倍得到函数的图象。
    (2)将函数的全部图象中的每一点纵坐标不变,横坐标伸长或缩短为原来的倍得到函数的图象。





    (答题时间:30分钟)
    1. 为了得到函数的图象,只需要把函数的图象上所有的点( )
    A. 向右平移3个单位长度,再向下平移1个单位长度
    B. 向左平移3个单位长度,再向下平移1个单位长度
    C. 向右平移3个单位长度,再向上平移1个单位长度
    D. 向左平移3个单位长度,再向上平移1个单位长度
    2. 函数的图象大致是( )

    3. 函数的图象可能是( )

    4. 函数的图象大致是( )

    5. 为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点(  )
    A. 向左平行移动1个单位长度
    B. 向右平行移动1个单位长度
    C. 向左平行移动π个单位长度
    D. 向右平行移动π个单位长度
    6. 将函数y=sin x的图象向左平移个单位,得到函数y=f(x)的图象,则下列说法正确的是(  )
    A. y=f(x)是奇函数
    B. y=f(x)的周期为π
    C. y=f(x)的图象关于直线x=对称
    D. y=f(x)的图象关于点对称




    1. 答案:A
    2. 答案:C
    3. 答案:B
    解析:函数定义域为,且,所以函数为偶函数,图象关于轴对称。由复合函数单调性可知在上单调递减,在上单调递增。故选B。
    4. 答案:A
    5. 答案:A
    解析:根据平移法则“左加右减”可知,将函数y=sin x的图象上所有的点向左平移1个单位长度,即可得到函数y=sin(x+1)的图象。
    6. 答案:D
    解析:将函数y=sin x的图象向左平移个单位后,得到函数y=f(x)=sin(x+)的图象,即f(x)=cos x。由余弦函数的图象与性质知,f(x)是偶函数,其最小正周期为2π,且图象关于直线x=kπ(k∈Z)对称,关于点(k∈Z)对称,故选D。

    相关学案

    人教A版人教A版(2019)数学必修第一册专题:函数性质的综合应用、基本初等函数综合提高学案: 这是一份数学必修 第一册全册综合优质学案,共11页。

    人教A版人教A版(2019)数学必修第一册三角函数的应用学案: 这是一份高中人教A版 (2019)全册综合精品导学案,共10页。

    人教A版人教A版(2019)数学必修第一册函数yAsin(ωx+φ)学案: 这是一份人教A版 (2019)必修 第一册全册综合优质学案设计,共9页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教A版人教A版(2019)数学必修第一册专题:函数的周期性与对称性学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map