所属成套资源:2018-2019年九年级上期末数学试卷(含答案)
2018-2019学年河南省商丘市柘城县九年级上期末数学模拟检测试题(含答案)
展开
这是一份2018-2019学年河南省商丘市柘城县九年级上期末数学模拟检测试题(含答案),共21页。试卷主要包含了函数的图象如图所示,则结论,下列事件中,属于必然事件的是等内容,欢迎下载使用。
河南省商丘市柘城县2018-2019学年九年级(上)期末数学模拟检测试题一.填空题(共6小题,满分24分,每小题4分)1.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为 .2.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是: 3.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3; ④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小. 其中正确结论的序号是 .4.梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则= .5.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是 cm.6.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN= 时,△AMN与原三角形相似.二.选择题(共8小题,满分24分,每小题3分)7.下列生态环保标志中,是中心对称图形的是( )A. B. C. D.8.对于反比例函数y=﹣,下列说法不正确的是( )A.图象分布在第二、四象限 B.当x>0时,y随x的增大而增大 C.图象经过点(1,﹣2) D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y29.下列事件中,属于必然事件的是( )A.三角形的外心到三边的距离相等 B.某射击运动员射击一次,命中靶心 C.任意画一个三角形,其内角和是180° D.抛一枚硬币,落地后正面朝上10.如图,△ABC中,DE∥BC, =,AE=2cm,则AC的长是( )A.2cm B.4cm C.6cm D.8cm11.如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A.0 B. C. D.112.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是( )A.a=b B.a=2b C.a=2b D.a=4b13.一个圆锥形工艺品,它的高为3cm,侧面展开图是半圆.则此圆锥的侧面积是( )A.9π B.18π C.π D.27π14.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣6三.解答题(共7小题,满分52分)15.(5分)解方程:x2﹣4x﹣5=0.16.(6分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)17.(6分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.18.(7分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.19.(9分)如图,AB是⊙O的弦,AB=2,点C在弧AmB上运动,且∠ACB=30°.(1)求⊙O的半径;(2)设点C到直线AB的距离为x,图中阴影部分的面积为y,求y与x之间的函数关系,并写出自变量x的取值范围.20.(9分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?21.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
参考答案一.填空题1.解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.2.解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.3.解:①将组成方程组得,,由于x>0,解得,故A点坐标为(2,2).②由图可知,x>2时,y1>y2;③当x=1时,y1=1;y2=4,则BC=4﹣1=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.可见,正确的结论为①③④.故答案为:①③④.4.解:如图1:∵AB=3, =2,∴AF=2,BF=1,∵AB∥CD,∴△AEF∽△CED,∴=,∴==;如图2:∵AB=3, =2,∴AF=6,BF=3,∵AB∥CD,∴△AEF∽△CED,∴=,∴==.故答案为:或.5.解:设母线长为R,则:65π=π×5R,解得R=13cm.6.【解答】解:由题意可知,AB=9,AC=6,AM=3,①若△AMN∽△ABC,则=,即=,解得:AN=2;②若△AMN∽△ACB,则=,即=,解得:AN=4.5;故AN=2或4.5.故答案为:2或4.5.二.选择题(共8小题,满分24分,每小题3分)7.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.8.解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.9.解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.10.解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.11.解:所有等可能的情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题的情况有:①②⇒③;①③⇒②;②③⇒①,则P=1,故选:D.12.解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.13.解:设圆锥的底面圆的半径为r,母线长为R,则2πr=,所以R=2r,所以圆锥的高==r,即r=3,解得r=3,则R=6,所以此圆锥的侧面积=•2π•3•6=18π.故选:B.14.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.三.解答题(共7小题,满分52分)15.解:(x+1)(x﹣5)=0,则x+1=0或x﹣5=0,∴x=﹣1或x=5.16.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:; (2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:; (3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.17.解:(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数y=∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个函数的表达式得解得或∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4∴点C(﹣4,0)设点P的坐标为(x,0)∵S△ACP=S△BOC∴解得x1=﹣6,x2=﹣2∴点P(﹣6,0)或(﹣2,0)18.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠BCD=∠A,∠ADC=90°.∵E是AC的中点,∴DE=AE=CE,∴∠ADE=∠A,∴∠BCD=∠ADE.又∠ADE=∠FDB,∴∠FCD=∠FDB.∵∠CFD=∠DFB,∴△CFD∽△DFB,∴DF2=BF•CF.(2)∵AE•AC=AG•AD,∴=.∵∠A=∠A,∴△AEG∽△ADC,∴EG∥BC,∴△EGD∽△FBD,∴=.由(1)知:△CFD∽△DFB,∴=,∴=,∴EG•CF=ED•DF.19.解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB,∴△AOB是等边三角形,∴⊙O的半径是2;(2)∵点P到直线AB的距离为x,∴△PAB的面积为×2×x=x,弓形AB的面积=扇形AOB的面积﹣△AOB的面积=﹣=π﹣,∴y=x+π﹣(0≤x≤2+)20.解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx,求解得:∴yB与x的函数关系式:yB=﹣0.2x2+1.6x (2)根据表格中对应的关系可以确定为一次函数,故设函数关系式yA=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则yA=0.4x; (3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.21.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8; (2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m; ②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).
相关试卷
这是一份河南省商丘市柘城县2023-2024学年九年级上学期期末数学试题(含答案),共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份+河南省商丘市柘城县2023-2024学年九年级上学期1月期末数学试题,共4页。
这是一份_河南省商丘市柘城县2023-2024学年九年级上学期1月期末数学试题(,共4页。