2018-2019学年黑龙江省大庆市肇源县九年级上期末数学模拟试题含答案解析
展开黑龙江省大庆市肇源县2018-2019学年九年级(上)期末数学模拟试题(五四学制)
一.选择题(共10小题,满分30分,每小题3分)
1.2cos30°的值等于( )
A.1 B. C. D.2
2.抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是( )
A.m≤2或m≥3 B.m≤3或m≥4 C.2<m<3 D.3<m<4
3.若一个多边形的内角和是1080度,则这个多边形的边数为( )
A.6 B.7 C.8 D.10
4.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示
成绩(米) | 4.50 | 4.60 | 4.65 | 4.70 | 4.75 | 4.80 |
人数 | 2 | 3 | 2 | 3 | 4 | 1 |
则这些运动员成绩的中位数、众数分别是( )
A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.70
5.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )
A. B.
C. D.
6.小明从右边的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0,②c=0,③函数的最小值为﹣3,④当0<x1<x2<2时,y1>y2,⑤对称轴是直线x=2.你认为其中正确的个数为( )
A.2 B.3 C.4 D.5
7.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为( )
A.40° B.50° C.60° D.70°
8.如图,点C(4,0),D(0,3),O(0,0),在⊙A上,BD是⊙A的一条弦,则sin∠OBD=( )
A. B. C. D.
9.如图,在平面直角坐标系中,半径为2的⊙P的圆心P的坐标为(3,0),将⊙P沿x轴左平移,使⊙P与y轴相切,则平移的距离为( )
A.1 B.3 C.5 D.1 或 5
10.已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是( )
A.m≤5 B.m≥2 C.m<5 D.m>2
二.填空题(共10小题,满分30分,每小题3分)
11.二次函数y=(x+1)2﹣3最小值为 .
12.把抛物线y=﹣x2向上平移2个单位,那么所得抛物线与x轴的两个交点之间的距离是 .
13.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为 .
14.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为 .
15.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为 .
16.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为 .
17.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为 .
18.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接AE,则sin∠AED= .
19.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是 .
20.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C17.若P(50,m)在第17段抛物线C17上,则m= .
三.解答题(共8小题,满分50分)
21.(4分)计算:()﹣2﹣+(﹣4)0﹣cos45°.
22.(8分)已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.
(1)求证:AC是⊙O的切线;
(2)若OA=10,AD=16,求AC的长.
23.(8分)如图,在平面直角坐标系中,以点C(0,3)为圆心,5为半径作圆,交x轴于A,B两点,交y轴正半轴于P点,以点P为顶点的抛物线经过点A、B两点.
(1)求出A,B两点的坐标;
(2)求此抛物线的解析式.
24.(7分)某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x≤12且x为整数).
(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?
(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;
(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.
25.(8分)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).
26.(8分)如今共享单车可以说是火遍大江南北,在全国各大城市都可以看到各种颜色的共享单车,一时间如雨后春笋般冒出来,在方便大家出行的同时,也有很多不文明行为产生,主要表现为以下四个方面:A.用户私藏;B.不规范停车;C.上私锁;D.恶意损坏,某市文明办对于“共享单车时如何共享文明?”做了调研,并将调研结果绘制成如下不完整的统计图.
请你结合图中信息解答下列问题:
(1)本次调研采用的调查方式是 ;(填“普查”或“抽样调查”)
(2)此次参与调研的总人数是 人,扇形统计图中D所占的百分数是 ;
(3)请把条形统计图补充完整;
(4)若该市使用共享单车存在不文明行为的有1200人,请根据样本估计全市“B.不规范停车”的人数是多少?
27.(7分)某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).
(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为 ;
(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;
(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为 .
28.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
参考答案
一.选择题
1.解:2cos30°=2×=.
故选:C.
2.解:把A(4,4)代入抛物线y=ax2+bx+3得:
16a+4b+3=4,
∴16a+4b=1,
∴4a+b=,
∵对称轴x=﹣,B(2,m),且点B到抛物线对称轴的距离记为d,满足0<d≤1,
∴
∴,
∴||≤1,
∴或a,
把B(2,m)代入y=ax2+bx+3得:
4a+2b+3=m
2(2a+b)+3=m
2(2a+﹣4a)+3=m
﹣4a=m,
a=,
∴或,
∴m≤3或m≥4.
故选:B.
3.解:根据n边形的内角和公式,得
(n﹣2)•180=1080,
解得n=8.
∴这个多边形的边数是8.
故选:C.
4.解:这些运动员成绩的中位数、众数分别是4.70,4.75.
故选:C.
5.解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;
B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;
C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;
D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.
故选:B.
6.解:①由抛物线开口向上,得到a>0,本选项错误;
②由抛物线过原点,得到c=0,本选项正确;
③当x=2时,函数的最小值为﹣3,本选项正确;
④当0<x1<x2<2时,函数为减函数,得到y1>y2,本选项正确;
⑤对称轴是直线x=2,本选项正确,
则其中正确的个数为4.
故选:C.
7.解:如图,连接OA、OB,
∵BM是⊙O的切线,
∴∠OBM=90°,
∵∠MBA=140°,
∴∠ABO=50°,
∵OA=OB,
∴∠ABO=∠BAO=50°,
∴∠AOB=80°,
∴∠ACB=∠AOB=40°,
故选:A.
8.解:∵D(0,3),C(4,0),
∴OD=3,OC=4,
∵∠COD=90°,
∴CD==5,
连接CD,如图所示:
∵∠OBD=∠OCD,
∴sin∠OBD=sin∠OCD=.
故选:D.
9.解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为5;
当⊙P位于y轴的右侧且与y轴相切时,平移的距离为1.
故选:D.
10.解:∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,
∴△=(﹣1)2﹣4×1×(m﹣1)≥0,
解得:m≤5,
故选:A.
二.填空题(共10小题,满分30分,每小题3分)
11.解:根据二次函数的性质可知,二次函数y=(x+1)2﹣3最小值为﹣3,
故答案为:﹣3.
12.解:所得抛物线为y=﹣x2+2,当y=0时,﹣x2+2=0,解得x=±,
∴两个交点之间的距离是|﹣﹣|=.
13.解:∵在一个不透明的盒子中装有8个白球,从中随机摸出一个球,它是白球的概率为,
设黄球有x个,根据题意得出:
∴=,
解得:x=4.
故答案为:4.
14.解:∵扇形OAB的圆心角为90°,扇形半径为2,
∴扇形面积为: =π(cm2),
半圆面积为:×π×12=(cm2),
∴SQ+SM =SM+SP=(cm2),
∴SQ=SP,
连接AB,OD,
∵两半圆的直径相等,
∴∠AOD=∠BOD=45°,
∴S绿色=S△AOD=×2×1=1(cm2),
∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).
故答案为:﹣1.
15.解:∵BD是⊙O的直径,
∴∠BCD=90°(直径所对的圆周角是直角),
∵∠CBD=30°,
∴∠D=60°(直角三角形的两个锐角互余),
∴∠A=∠D=60°(同弧所对的圆周角相等);
故答案是:60°.
16.解:连接AQ,BQ,
∵∠P=45°,
∴∠QAB=∠P=45°,∠AQB=90°,
∴△ABQ是等腰直角三角形.
∵AB=2,
∴2BQ2=4,
∴BQ=.
故答案为:.
17.解:连接OA、AD,如右图所示,
∵BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,
∴∠DAB=90°,∠OAC=90°,
∵AB=AC,
∴∠B=∠C,
在△ACO和△BAD中,
,
∴△ACO≌△BAD(ASA),
∴AO=AD,
∵AO=OD,
∴AO=OD=AD,
∴△AOD是等边三角形,
∴∠ADO=∠DAO=60°,
∴∠B=∠C=30°,∠OAE=30°,∠DAC=30°,
∴AD=DC,
∵CD=2,
∴AD=2,
∴点O为AD的中点,OE∥AD,OE⊥AB,
∴OE=,
故答案为:.
18.解:过A点作AG⊥ED,如图:
设正方形ABCD的边长为a,
∵等腰直角△CDE,DE=CE,
∴DE=a,∠CDE=45°,
∴△AGD也是等腰直角三角形,
∴AG=GD=a,
∴AE=,
∴sin∠AED=,
故答案为:.
19.解:
过F作FM⊥BE于M,则∠FME=∠FMB=90°,
∵四边形ABCD是正方形,AB=2,
∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
由勾股定理得:BD=2,
∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,
∴∠DCE=90°,BF=BD=2,∠FBE=90°﹣45°=45°,
∴BM=FM=2,ME=2,
∴阴影部分的面积S=S△BCD+S△BFE+S扇形DCE﹣S扇形DBF
=++﹣
=6﹣π,
故答案为:6﹣π.
20.解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),
∴图象与x轴交点坐标为:(0,0),(3,0),
∵将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;
…
如此进行下去,直至得C17.
∴C17的解析式与x轴的交点坐标为(48,0),(51,0),且图象在x轴上方,
∴C13的解析式为:y13=﹣(x﹣48)(x﹣51),
当x=50时,m=﹣(50﹣48)×(50﹣51)=2.
故答案为:2.
三.解答题(共8小题,满分50分)
21.解:原式=4﹣3+1﹣×
=2﹣1
=1.
22.(1)证明:∵∠BED=∠BAD,∠C=∠BED,
∴∠BAD=∠C.(1分)
∵OC⊥AD于点F,
∴∠BAD+∠AOC=90°.(2分)
∴∠C+∠AOC=90°.
∴∠OAC=90°.
∴OA⊥AC.
∴AC是⊙O的切线.(4分)
(2)解:∵OC⊥AD于点F,
∴AF=AD=8.(5分)
在Rt△OAF中,OF==6,(6分)
∵∠AOF=∠AOC,∠OAF=∠C,
∴△OAF∽△OCA.(7分)
∴.
即OC=.(8分)
在Rt△OAC中,AC=.(10分)
23.解:(1)连结AC,由题意得CO=3,AC=5.
∵CO⊥AO,
∴△ACO是直角三角形且∠ACO是直角,
∴AO===4.
∵由题意可得y轴是抛物线的对称轴,
∴BO=AO=4.
∴点A坐标为(﹣4,0),点B的坐标为(4,0).
(2)∵CP=5,
∴OP=CO+CP=3+5=8,
∴点P的坐标是( 0,8),
∴可设抛物线解析式为y=ax2+8,
∵抛物线经过点A(﹣4,0),
∴a(﹣4)2+8=0
解得a=﹣.
∴该抛物线的解析式为y=﹣x2+8.
24.解:(1)设y=kx+b(1≤x≤7),
由题意得,,
解得k=﹣,b=4
∴y=﹣x+4(1≤x≤7)
∴x=6时,y=﹣×6+4=3∴300÷20=15,15(1+20%)=18,
又x=12时,y=﹣×12+=∴×100÷18=12.5万人,
所以最后一年可解决12.5万人的住房问题;
(2)由于每平方米的年租金和时间都是变量,且对于每一个确定的时间x的值,每平方米的年租金m都有唯一的值与它对应,所以它们能构成函数.
由题意知m=2x+36(1≤x≤12)
(3)解:W=
∵当x=3时Wmax=147,x=8时Wmax=143,147>143
∴当x=3时,年租金最大,Wmax=1.47亿元
当x=3时,m=2×3+36=42元
58×42=2436元
答:老张这一年应交租金为2436元.
25.解:作DF⊥AC于F.
∵DF:AF=1:,AD=200米,
∴tan∠DAF=,
∴∠DAF=30°,
∴DF=AD=×200=100(米),
∵∠DEC=∠BCA=∠DFC=90°,
∴四边形DECF是矩形,
∴EC=DF=100(米),
∵∠BAC=45°,BC⊥AC,
∴∠ABC=45°,
∵∠BDE=60°,DE⊥BC,
∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,
∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,
∴∠ABD=∠BAD,
∴AD=BD=200(米),
在Rt△BDE中,sin∠BDE=,
∴BE=BD•sin∠BDE=200×=100(米),
∴BC=BE+EC=100+100(米).
26.解:(1)由统计图可得,
本次调研采用的调查方式是抽样调查,
故答案为:抽样调查;
(2)此次参与调研的总人数是:6÷6%=100(人),扇形统计图中D所占的百分数是:4÷100×100%=4%,
故答案为:100,4%;
(3)选择C的有:100﹣6﹣75﹣4=15(人),
补全条形统计图如右图所示;
(4)1200×75%=900(人)
答:估计全市“B.不规范停车”的人数约是900人.
27.解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;
(2)画树状图为:
共有20种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为12,
所以一个径赛项目和一个田赛项目的概率P1==;
(3)两个项目都是径赛项目的结果数为6,
所以两个项目都是径赛项目的概率P2==.
故答案为,.
28.解:(1)当y=0时,﹣3x﹣3=0,x=﹣1
∴A(﹣1,0)
当x=0时,y=﹣3,
∴C(0,﹣3),
∴
∴,
抛物线的解析式是:y=x2﹣2x﹣3.
当y=0时,x2﹣2x﹣3=0,
解得:x1=﹣1,x2=3
∴B(3,0).
(2)由(1)知B(3,0),C(0,﹣3)直线BC的解析式是:y=x﹣3,
设M(x,x﹣3)(0≤x≤3),则E(x,x2﹣2x﹣3)
∴ME=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+;
∴当x=时,ME的最大值为.
(3)答:不存在.
由(2)知ME取最大值时ME=,E(,﹣),M(,﹣)
∴MF=,BF=OB﹣OF=.
设在抛物线x轴下方存在点P,使以P、M、F、B为顶点的四边形是平行四边形,
则BP∥MF,BF∥PM.
∴P1(0,﹣)或P2(3,﹣)
当P1(0,﹣)时,由(1)知y=x2﹣2x﹣3=﹣3≠﹣
∴P1不在抛物线上.
当P2(3,﹣)时,由(1)知y=x2﹣2x﹣3=0≠﹣
∴P2不在抛物线上.
综上所述:在x轴下方抛物线上不存在点P,使以P、M、F、B为顶点的四边形是平行四边形.
黑龙江省大庆市肇源县四校联考2023-2024学年九年级上学期开学数学试题(含答案): 这是一份黑龙江省大庆市肇源县四校联考2023-2024学年九年级上学期开学数学试题(含答案),文件包含数学月考-试题docx、答案docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
精品解析:黑龙江省大庆市肇源县2021-2022学年九年级学期期中数学试题(解析版): 这是一份精品解析:黑龙江省大庆市肇源县2021-2022学年九年级学期期中数学试题(解析版),共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2021-2022学年黑龙江省肇源县中考数学模拟试题含解析: 这是一份2021-2022学年黑龙江省肇源县中考数学模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。