







高中数学8.1 基本立体图形优质课件ppt
展开概率的基本性质1.思考在抛掷质地均匀的骰子试验中,我们定义如下事件:C1=“出现1点”,C2=“出现2点”,C3=“出现3点”,C4=“出现4点”,C5=“出现5点”,C6=“出现6点”,D1=“出现的点数不大于1”,D2=“出现的点数大于4”,D3=“出现的点数小于6”,E=“出现的点数小于7”,F=“出现的点数大于6”,G=“出现的点数为偶数”,H=“出现的点数为奇数”,等等.(1)上述事件中哪些是必然事件?哪些是不可能事件?提示E是必然事件;F是不可能事件.(2)如果事件C1发生,那么一定有哪些事件发生?反之,成立吗?在集合中,集合C1与这些集合之间的关系怎样描述?提示如果事件C1发生,那么一定发生的事件有D1,D3,E,H,反之,如果事件D1,D3,E,H分别成立,那么能推出事件C1发生的只有D1.所以从集合的观点看,事件C1是事件D3,E,H的子集,集合C1与集合D1相等.
(3)如果事件A与事件B互斥,则事件A∪B发生的频数与事件A发生、事件B发生的频数有什么关系?fn(A∪B)与fn(A),fn(B)有什么关系?进一步得到P(A∪B)与P(A),P(B)有什么关系?提示若事件A与事件B互斥,则A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,从而有fn(A∪B)=fn(A)+fn(B),由此得到P(A∪B)=P(A)+P(B),这就是概率的加法公式.(4)如果事件A与事件B互为对立事件,P(A∪B)与P(A),P(B)又有什么关系?提示因为事件A与事件B互为对立事件,所以A∪B为必然事件,所以P(A∪B)=1.由P(A∪B)=P(A)+P(B),得1=P(A)+P(B),从而得出P(B)=1-P(A),P(A)=1-P(B).
归纳提升 (1)对于P(A∪B)=P(A)+P(B)应用的前提是A,B互斥,并且该公式可以推广到多个事件的情况.如果事件A1,A2,…,Am两两互斥,那么事件A1∪A2∪…∪Am发生的概率等于这m个事件分别发生的概率之和,即P(A1∪A2∪…∪Am)=P(A1)+P(A2)+…+P(Am).该公式我们常称为互斥事件的概率加法公式.(2)若A与B互为对立,则有P(A)+P(B)=1;若P(A)+P(B)>1,并不能得出A与B互为对立.(3)对于概率加法的一般公式P(A∪B)=P(A)+P(B)-P(A∩B),当A∩B=⌀时,就是性质3.
3.做一做(1)从装有20个红球和30个白球的罐子里任取两个球,下列情况中是互斥而不是对立的两个事件是( )A.至少有一个红球与至少有一个白球B.恰有一个红球与都是白球C.至少有一个红球与都是白球D.至多有一个红球与都是红球(2)掷一枚均匀的正六面体骰子,设A=“出现3点”,B=“出现偶数点”,则P(A∪B)等于 . (3)甲、乙两人各射击一次,命中率分别为0.8和0.5,两人同时命中的概率为0.4,则甲、乙两人至少有一人命中的概率为 .
(4)判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.①互斥事件不一定是对立事件,但对立事件一定是互斥事件.( )②在同一试验中的两个事件A与B,一定有P(A∪B)=P(A)+P(B).( )③若事件A,B满足P(A)+P(B)=1,则A,B是对立事件.( )
解析:(1)由题意所有的基本事件可分为三类:两个红球,一红一白,两个白球.易知A选项的事件不互斥;C、D两个选项中的事件为对立事件;而B项中的事件是互斥,同时还有“两个红球”的事件,故不对立.故选B.(3)设事件A=“甲命中”,事件B=“乙命中”,则“甲、乙两人至少有一人命中”为事件A∪B,∴P(A∪B)=P(A)+P(B)-P(A∩B)=0.8+0.5-0.4=0.9.
互斥、互为对立事件的判断例1判断下列各事件是不是互斥事件,如果是互斥事件,那么是不是对立事件,并说明理由.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是女生.分析根据互斥事件、对立事件的定义来判断.
解:(1)是互斥事件.理由是在所选的2名同学中,“恰有1名男生”实质是选出“1名男生和1名女生”,它与“恰有2名男生”不可能同时发生,所以是互斥事件.不是对立事件.理由是当选出的2名同学都是女生时,这两个事件都没有发生,所以不是对立事件.(2)不是互斥事件.理由是“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”这两种结果,“至少有1名女生”包括“1名女生、1名男生”和“2名都是女生”这两种结果,当选出的是1名男生、1名女生时,它们同时发生.这两个事件也不是对立事件.理由是这两个事件能同时发生,所以不是对立事件.(3)是互斥事件.理由是“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”这两种结果,它与“全是女生”不可能同时发生.是对立事件.理由是这两个事件不能同时发生,且必有一个发生,所以是对立事件.
反思感悟 1.判断互斥事件和对立事件时,主要用定义来判断.当两个事件不能同时发生时,这两个事件是互斥事件;当两个事件不能同时发生且必有一个发生时,这两个事件是对立事件.2.当事件的构成比较复杂时,可借助于集合的思想方法进行互斥事件、对立事件的判定.
延伸探究在本例中,若从中任选3名同学呢?试分析问题(1),(2)的两个事件之间的关系.解:(1)是互斥事件.理由是在所选的3名同学中“恰有1名男生”实质是选出“1名男生和2名女生”;“恰有2名男生”实质是选出“2名男生和1名女生”,显然两个事件不能同时发生,是互斥事件;两个事件不是对立事件,因为当选出“3名男生”时,两个事件可以同时不发生.综上,两个事件是互斥事件,但不是对立事件.(2)不是互斥事件.理由是“至少有1名男生”包含“有1名男生2名女生”“有2名男生1名女生”“有3名男生”三种结果;“至少有1名女生”则包含“1名女生2名男生”“2名女生1名男生”,显然两个事件可以同时发生,所以不是互斥事件,更不是对立事件.
互斥事件的概率加法公式的应用例2已知事件E,F互斥,P(E)=0.2,P(E∪F)=0.8,则P(F)= . 分析由E,F互斥,得到P(F)=P(E∪F)-P(E),由此能求出结果.答案:0.6解析:∵E,F互斥,P(E)=0.2,P(E∪F)=0.8,∴P(F)=P(E∪F)-P(E)=0.8-0.2=0.6.
例3玻璃盒子装有各种颜色的球共12个,其中5个红球、4个黑球、2个白球、1个绿球,从中任取1个球.设事件A=“取出1个红球”,事件B=“取出1个黑球”,事件C=“取出1个白球”,事件D=“取出1个绿球”,(1)“取出1球为红球或黑球”的概率;(2)“取出1球为红球或黑球或白球”的概率.分析先判断各事件间的关系,再用公式求解.
反思感悟 1.将所求事件转化为彼此互斥的若干个事件的和,利用概率的加法公式求解.互斥事件的概率加法公式可以推广为P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An),其使用的前提条件仍然是A1,A2,…,An彼此互斥.在将事件拆分成若干个互斥事件时,注意不能重复和遗漏.2.当所要拆分的事件非常烦琐,而其对立事件较为简单时,可先求其对立事件的概率,再运用公式求解.但是一定要找准其对立事件,避免错误.
概率一般加法公式的应用例4甲、乙、丙、丁四人参加4×100米接力赛,他们跑每一棒的概率均为 .求甲跑第一棒或乙跑第四棒的概率.
反思感悟 (1)对于与古典概型有关的问题可直接结合A∪B,A,B,A∩B的含义进行求解.(2)若该模型不是古典概型,则需要套用公式P(A∪B)=P(A)+P(B)-P(A∩B),特别要注意P(A∩B)的数值.
变式训练2在所有的两位数(10~99)中,任取一个数恰好能被2或3整除的概率是( )答案:C
用逆向思维方法处理概率问题典例甲、乙两人参加普法知识竞赛,共有5个不同的题目.其中,选择题3个,判断题2个,甲、乙两人各抽一题.(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?解:把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.总的事件数为20.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2),共6种;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种.
归纳提升 在求解复杂的事件的概率时,通常有两种方法,一是将所求事件的概率转化成彼此互斥的概率之和.二是先求此事件的对立事件的概率,特别是在涉及“至多”或“至少”问题时,常常用此思维模式.再利用P(A)=1-P( )来得出原问题的解.这种处理问题的方法称为逆向思维,有时能使问题的解决事半功倍.
1.给出以下结论:①互斥事件一定对立;②对立事件一定互斥;③互斥事件不一定对立;④事件A与B的和事件的概率一定大于事件A的概率;⑤事件A与B互斥,则有P(A)=1-P(B).其中正确命题的个数为( )A.0B.1C.2D.3答案:C解析:对立必互斥,互斥不一定对立,故②③正确,①错;又当A∪B=A时,P(A∪B)=P(A),故④错;只有事件A与B为对立事件时,才有P(A)=1-P(B),故⑤错.
3.若事件A,B满足A∩B=⌀,A∪B=Ω,且P(A)=0.3,则P(B)= . 答案:0.7
4.盒子中有大小、形状均相同的一些黑球、白球和黄球,从中摸出一个球,摸出黑球的概率是0.42,摸出黄球的概率是0.18,则摸出的球是白球的概率是 ,摸出的球不是黄球的概率是 ,摸出的球或者是黄球或者是黑球的概率是 . 答案:0.40 0.82 0.605.一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,问至少有一根熔断的概率是多少?解:设A=“甲熔丝熔断”,B=“乙熔丝熔断”,则“甲、乙两根熔丝至少有一根熔断”为事件A∪B.P(A∪B)=P(A)+P(B)-P(A∩B)=0.85+0.74-0.63=0.96.
高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率课文配套课件ppt: 这是一份高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率课文配套课件ppt,共23页。PPT课件主要包含了导入新课,精彩课堂,典型例题,课堂练习,课堂总结等内容,欢迎下载使用。
高中数学10.1 随机事件与概率课文课件ppt: 这是一份高中数学10.1 随机事件与概率课文课件ppt,文件包含核心素养人教版小学数学五年级下册27奇偶性课件pptx、核心素养人教版小学数学五年级下册《奇偶性》教案docxdocx、核心素养人教版小学数学五年级下册27奇偶性导学案docx等3份课件配套教学资源,其中PPT共23页, 欢迎下载使用。
高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率课前预习ppt课件: 这是一份高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率课前预习ppt课件,共1页。