中考数学几何模型加强版 模型13 正方形与45°角的基本图
展开一、单选题
1.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①AG+EC=GE;②;③的周长是一个定值;④连结FC,的面积等于.在以上4个结论中,正确的是( )
A.1B.2C.3D.4
2.如图,正方形和正方形的顶点在同一直线上,且,给出下列结论:,,的面积,其中正确的个数为( )
A.个B.个C.个D.个
3.如图,在正方形有中,是上的动点,(不与、重合),连结,点关于的对称点为,连结并延长交于点,连接,过点作⊥交的延长线于点,连接,那么些的值为( )
A.1B.C.D.2
4.如图,在正方形内作,交于点,交于点,连接,过点作,垂足为点,将绕点顺时针旋转得到,若,则以下结论:①,②,③,④,正确的个数有( )
A.1个B.2个C.3个D.4个
二、解答题
5.已知:四边形为正方形,是等腰,.
(1)如图:当绕点旋转时,若边、分别与、相交于点、,连接,试证明:.
(2)如图,当绕点旋转时,若边、分别与、的延长线相交于点、,连接.
①试写出此时三线段、、的数量关系并加以证明.
②若,,求:正方形的边长以及中边上的高.
6.如图,,,点、分别在边、上,,过点作,且点在的延长线上.
(1)与全等吗?为什么?
(2)若,,求的长.
7.如图,在矩形中,的平分线交于点,于点,于点,与交于点.
(1)求证:四边形是正方形;
(2)若,求证:;
(3)在(2)的条件下,已知,求的长.
8.正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=CF+AE;
(2)当AE=2时,求EF的长.
9.已知A(m,n),且满足|m﹣2|+(n﹣2)2=0,过A作AB⊥y轴,垂足为B.
(1)求A点坐标.
(2)如图1,分别以AB,AO为边作等边△ABC和△AOD,试判定线段AC和DC的数量关系和位置关系,并说明理由.
(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由.
10.已知,如图1,正方形ABCD的边长为6,点E、F分别在边AB、AD的延长线上,且BE=DF,连接EF.
(1)求∠E的度数;
(2)将△AEF绕点A顺时针方向旋转,当旋转角α满足0°<α<45°时,设EF与射线AB交于点G,与AC交于点H,如图所示,试判断线段FH、HG、GE的数量关系,并说明理由.
(3)若将△AEF绕点A旋转一周,连接DF、BE,并延长EB交直线DF于点P,连接PC,则点P的运动路径长为 ;线段PC的取值范围为 .
11.(1)如图1所示,已知正方形中,是上一点,是延长线上一点,且.求证:;
(2)如图2所示,在正方形中,是上一点,是上一点,如果,请利用(1)中的结论证明:.
12.(1)如图,在正方形 ABCD 中,∠FAG=45°,请直接写出 DG,BF 与FG 的数量关系,不需要证明.
(2)如图,在 Rt△ABC 中,∠BAC=90°,AB=AC,E,F 分别是 BC 上两点,∠EAF=45°,
①写出 BE,CF,EF 之间的数量关系,并证明.
②若将(2)中的△AEF 绕点 A 旋转至如图所示的位置,上述结论是否仍然成立? 若不成立,直接写出新的结论 ,无需证明.
(3)如图,△AEF 中∠EAF=45°,AG⊥EF 于 G,且GF=2,GE=3,则 = .
13.正方形ABCD中,E为BC上的一点,F为CD上的一点,,求的度数.
14.如图,正方形ABCD中,E、F分别在边BC、CD上,且∠EAF=45°,连接EF,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如图中△ADF与△ABG可以看作绕点A旋转90°的关系.这可以证明结论“EF=BE+DF”,请补充辅助线的作法,并写出证明过程.
(1)延长CB到点G,使BG= ,连接AG;
(2)证明:EF=BE+DF
15.已知在正方形ABCD和正方形CEFG中,直线BG,DE交于点H.
(1)如图1,当B,C,E共线时,求证:BH⊥DE.
(2)如图2,把正方形CEFG绕C点顺时针旋转α度(0<α<90),M,N分别为BG,DE的中点,探究HM,HN,CM之间的数量关系,并证明你的结论.
(3)如图3,∠PDG=45°,DH⊥PG于H,PH=2,HG=4.直接写出DH的长.
16.已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上.
(1)若BE=DF,①求证:∠BAE=∠DAF;
②联结AC交EF于点O,过点F作FM∥AE,交AC的延长线于M,联结EM,求证:四边形AEMF是菱形.
(2)联结BD,交AE、AF于点P、Q.若∠EAF=45°,AB=1,设,,求 关于的函数关系及定义城.
17.如图,过线段AB的端点B作射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).
(1)求证:≌;
(2)判断CF与AB的位置关系,并说明理由;
(3)试探究AE+EF+AF与2AB是否相等,并说明理由.
三、填空题
18.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),,下列三个结论:①当MN=MC时,则;②2;③△MNC的周长不变;④∠AMN-∠AMB=60°.其中正确结论的序号是________.
19.如图,在正方形ABCD中,E是BC边上的一点,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG,则∠EAG=_____度.
20.如图,已知在中,,在内作第一个内接正方形,则第1个内接正方形的边长__________;然后取的中点,连接、,在内作第二个内接正方形;再取线段的中点,在内作第三个内接正方形…依次进行下去,则第2020个内接正方形的边长为__________.
21.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为2,3,H为线段DF的中点,则BH=_____.
22.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.一定成立的是_____.
23.如图,正方形中,,点是边的中点,连接,与交于点,点在上,点在上,且.若,则____.
24.如图,在边长为6的正方形内作,交于点,交于点,连接,将绕点顺时针旋转得到,若,则的长为__________.
25.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且,将绕点D逆时针旋转90°,得到. 若,则EF的长为__________.
中考数学几何模型加强版 模型09 有60°和90°角的旋转: 这是一份中考数学几何模型加强版 模型09 有60°和90°角的旋转,文件包含模型09有60°和90°角的旋转原卷版docx、模型09有60°和90°角的旋转解析版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。
中考数学几何模型加强版 模型15 燕尾角: 这是一份中考数学几何模型加强版 模型15 燕尾角,文件包含模型15燕尾角原卷版docx、模型15燕尾角解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
中考数学几何模型加强版 模型20 母子形相似模型: 这是一份中考数学几何模型加强版 模型20 母子形相似模型,文件包含模型20母子形相似模型原卷版docx、模型20母子形相似模型解析版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。