(新高考)2021届高考二轮复习专题六 电场 教师版
展开
专题 六
××
电 场
命题趋势
本专题主要考查库仑定律、电场强度、电势、电势差、电势能、电容、带电粒子在电场中的运动。命题形式选择题和计算题均有出现,考查考生的建模能力和应用数学知识处理物理问题的能力。
考点清单
一、电场的性质与带电粒子在电场中运动问题
1.三个物理量的判断方法
判断场强强弱
①根据电场线或等势面的疏密判断;②根据公式E=k和场强叠加原理判断
判断电势的高低
①根据电场线的方向判断;②由UAB=和UAB=φA-φB判断;③根据电场力做功(或电势能)判断
判断电势能大小
①根据Ep=qφ判断;②根据ΔEp=-W电,由电场力做功判断
2.电场中常见的运动类型
(1)匀变速直线运动:通常利用动能定理qU=mv2-mv来求解;对于匀强电场,电场力做功也可以用W=qEd来求解。
(2)偏转运动:一般研究带电粒子在匀强电场中的偏转问题。对于类平抛运动可直接利用平抛运动的规律以及推论;较复杂的曲线运动常用运动的合成与分解的方法来处理。
二、与平行板电容器相关的电场问题
1.记住三个公式:定义式C=,决定式C=,关系式E=。
2.掌握两个重要结论
(1)电容器与电路(或电源)相连,则两端电压取决于电路(或电源),稳定时相当于断路,两端电压总等于与之并联的支路电压。
(2)充电后电容器与电路断开,电容器所带电荷量不变,此时若只改变两板间距离,则板间电场强度大小不变。
3.注意一个特例:当有电容器的回路接有二极管时,因二极管的单向导电性,将使电容器的充电或放电受到限制。
精题集训
(70分钟)
经典训练题
1.(多选)(2020·山东学业水平等级考试·T10)真空中有两个固定的带正电的点电荷,电荷量不相等。一个带负电的试探电荷置于二者连线上的O点时,仅在电场力的作用下恰好保持静止状态。过O点作两正电荷连线的垂线,以O点为圆心的圆与连线和垂线分别交于a、c和b、d,如图所示。以下说法正确的是( )
A.a点电势低于O点
B.b点电势低于c点
C.该试探电荷在a点的电势能大于在b点的电势能
D.该试探电荷在c点的电势能小于在d点的电势能
【答案】BD
【解析】由题意可知O点场强为零,所以a、O两点间场强方向是由a指向O的,所以φa>φO,A错误;同理,φc>φO,O点与b点间的电场强度有竖直向上的分量,所以φO>φb,则φc>φb,B正确;同理,φa>φb,φc>φd,又带负电的试探电荷在电势高处电势能较小,所以C错误,D正确。
2.如图所示,平行板电容器与电动势为E′的直流电源(内阻不计)连接,下极板接地,静电计所带电荷量很少,可被忽略。一带负电油滴被固定于电容器中的P点。现将平行板电容器的上极板竖直向下平移一小段距离,则下列说法正确的是( )
A.平行板电容器的电容将变小
B.带电油滴的电势能将减小
C.静电计指针张角变小
D.若将上极板与电源正极断开后再将下极板左移一小段距离,则带电油滴所受电场力不变
【答案】B
【解析】将平行板电容器的上极板竖直向下移动一小段距离,导致极板间距减小,根据C=知,d减小,则电容增大,故A错误;电势差不变,d减小,则电场强度增加,P点与下极板的电势差变大,则P点的电势增大,因为该油滴带负电荷,则电势能减小,故B正确;静电计测量的是电容器两端的电势差,因为电容器始终与电源相连,则电势差不变,所以静电计指针张角不变,故C错误;若先将电容器上极板与电源正极的导线断开,则电荷量不变,再将下极板左移一小段距离,正对面积S减小,根据E===,知电场强度变大,则油滴所受电场力变大,故D错误。
3.(2019·全国卷Ⅱ·T24)如图所示,两金属板P、Q水平放置,间距为d。两金属板正中间有一水平放置的金属网G,P、Q、G的尺寸相同。G接地,P、Q的电势均为φ(φ>0)。质量为m、电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸面水平射入电场,重力忽略不计。
(1)求粒子第一次穿过G时的动能,以及它从射入电场至此时在水平方向上的位移大小;
(2)若粒子恰好从G的下方距离G也为h的位置离开电场,则金属板的长度最短应为多少?
【解析】(1)PG、QG间场强大小相等,均为E。粒子在PG间所受电场力F的方向竖直向下,设粒子的加速度大小为a,有:
E=,F=qE=ma
设粒子第一次到达G时动能为Ek,由动能定理有:qEh=Ek-mv
设粒子第一次到达G时所用的时间为t,粒子在水平方向的位移大小为l,则有:
h=at2,l=v0t
联立式解得Ek=mv+qh,l=v0。
(2)若粒子穿过G一次就从电场的右侧飞出,则金属板的长度最短。由对称性知,此时金属板的长度
L=2l=2v0。
高频易错题
1.(多选)(2019·全国卷Ⅲ·T21)如图所示,电荷量分别为q和-q(q>0)的点电荷固定在正方体的两个顶点上,a、b是正方体的另外两个顶点。则( )
A.a点和b点的电势相等
B.a点和b点的电场强度大小相等
C.a点和b点的电场强度方向相同
D.将负电荷从a点移到b点,电势能增加
【答案】BC
【解析】分别画出电荷q和-q在a、b处的电场,如图1所示,根据电场叠加的原理,可知a、b两点的电场强度大小、方向均相同,故B、C正确;画出-q、b、q、a所在平面的电场线,如图2,由图可知b点的电势大于a点,所以将负电荷从a点移到b点,电势能减小,故A、D错误。
【点评】本题考查点电荷电场强度叠加的计算,由于电场强度是矢量,因此对其大小和方向要全面考虑。本题的易错点在于不能将立体图转化为平面图,空间想象力差,不能正确运用几何关系进行分析,从而导致错解。
2.(2020·全国卷I·T25)在一柱形区域内有匀强电场,柱的横截面积是以O为圆心,半径为R的圆,AB为圆的直径,如图所示。质量为m,电荷量为q(q>0)的带电粒子在纸面内自A点先后以不同的速度进入电场,速度方向与电场的方向垂直。已知刚进入电场时速度为零的粒子,自圆周上的C点以速率v0穿出电场,AC与AB的夹角θ=60°。运动中粒子仅受电场力作用。
(1)求电场强度的大小;
(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?
(3)为使粒子穿过电场前后动量变化量的大小为mv0,该粒子进入电场时的速度应为多大?
【解析】 (1)由题意知在A点速度为零的粒子会沿着电场线方向运动,由于q>0,故电场线由A指向C,根据几何关系可知:xAC=R
所以根据动能定理有:qExAC=mv-0
解得:E=;
(2)根据题意可知要使粒子动能增量最大,则沿电场线方向移动距离最多,做AC垂线并且与圆相切,切点为D,即粒子要从D点射出时沿电场线方向移动距离最多,粒子在电场中做类平抛运动,根据几何关系有x=Rsin 60°=v1t
y=R+Rcos 60°=at2
而电场力提供加速度有qE=ma
联立各式解得粒子进入电场时的速度v1=;
(3)因为粒子在电场中做类平抛运动,粒子穿过电场前后动量变化量大小为mv0,即在电场方向上速度变化为v0,过C点做AC垂线会与圆周交于B点,故由题意可知粒子会从C点或B点射出。当从B点射出时由几何关系有
xBC=R=v2t2
xAC=R=at
电场力提供加速度有qE=ma
联立解得v2=;
当粒子从C点射出时初速度为0。
【点评】本题通过带电粒子在电场中的运动,考查带电粒子在电场中的加速和偏转问题。易错点在于找不到动能最大所对应的位置,从而导致无法解决问题(2);对于动量变化量为,只考虑了类平抛运动的情况,忽略了初速度为0的情况。
精准预测题
1.如图所示,用两根等长的轻质细绝缘线M、N把带电小球甲悬挂在水平天花板上,两线之间的夹角为θ=60°。小球甲电荷量q=2.0×10-6 C,质量m=0.1 kg,其正下方l=0.3 m处固定有一带等量同种电荷的小球乙。小球甲、乙均可视为点电荷,静电力常量k=9×109 N·m2/C2,重力加速度g取10 m/s2。则细线N的拉力大小为( )
A. N B. N
C. N D. N
【答案】A
【解析】小球甲、乙之间的库仑力F=k=0.4 N,设细线M、N的拉力大小均为T,对小球甲受力分析,根据平衡条件有2Tcos 30°+F=mg,解得T= N,故选A。
2.图中虚线是某电场中的一簇等势线。两个带电粒子从P点均沿等势线的切线方向射入电场,粒子运动的部分轨迹如图中实线所示。若粒子仅受电场力的作用,下列说法中正确的是( )
A.a、b两点的电场强度大小关系Ea>Eb
B.a、b两点的电势关系一定有Ua>Ub
C.粒子从P运动到a的过程中,电势能增大
D.粒子从P运动到b的过程中,动能增大
【答案】D
【解析】根据等势线的形状可知,电场是由一个点电荷产生的,离点电荷较远的a点电场强度较小,A错误;因为中心电荷的电性无法判断,电场线方向无法判定,则不能比较a、b的电势高低,B错误;根据轨迹的弯曲方向可知,a粒子受到中心电荷的斥力,电场力对a做正功,电势能减小,C错误;b粒子受到中心电荷的引力,电场力对b粒子做正功,动能增大,D正确。
3.如图所示,空间中a、b、c、d、a′、b′、c′、d′分别为立方体图形的顶点,在a′、b′所在直线上放置电荷量均为Q的异种点电荷M、N,M带正电且M、N关于a′、b′的中点对称。下列说法正确的是( )
A.a、d两点的电势相等
B.a、d′两点的场强相同
C.将电子从a点移到c′点,电子的电势能增加
D.将电子从a点移到c′点,电子的电势能减少
【答案】C
【解析】由等量异种电荷的电场线及等势面分布特点可知,φa>φd,故A错误;由场强的叠加可知,a、d′两点的场强大小相等,方向不同,故B错误;因φa>φc′,根据W=qUac′,故电子从a点移到c′点静电力做负功,故电子的电势能增加,故C正确,D错误。
4.在生产纺织品、纸张等绝缘材料过程中,为了实时监控材料的厚度,生产流水线上设置如图所示的传感器,其中甲、乙为平行板电容器的上、下两个固定极板,分别接在恒压直流电源的两极上。当通过极板间的材料厚度减小时,下列说法正确的是( )
A.有负电荷从a向b流过灵敏电流计G
B.甲、乙两板间材料内的电场强度为零
C.乙板上的电荷量变小
D.甲、乙平行板构成的电容器的电容增大
【答案】C
【解析】根据电容器电容决定式,有C=,可知当产品厚度减小时,导致εr减小,电容器的电容减小,根据电容器电容定义式C=,可知极板带电荷量减小时,有放电电流从a向b流过灵敏电流计G,即有负电荷从b向a流过灵敏电流计G,故AD错误,C正确;根据电场强度与电势差的关系式,有E=,因两板间电势差不变,板间距离不变,所以两板间电场强度不变,故B错误。
5.如图所示,平行板电容器A、B两极板水平放置,和一理想的二极管串联接在电源上,一带电小球静止在两板之间,则( )
A.若A、B两极板间距增大,小球将向下运动
B.若A、B两极板正对面积减小,小球将保持静止
C.若A、B两极板间插入电介质,电容器带电量不变
D.若A、B两极板间插入金属板,小球将向上运动
【答案】D
【解析】若A、B两极板间距增大,根据C=知电容C减小,根据Q=CU可知电容器要放电,但是由于二极管的单向导向性使得电容器电量保持不变,根据E=可知两板场强不变,小球仍静止,A错误;若A、B两极板正对面积减小,根据C=知电容C减小,根据Q=CU可知电容器要放电,但是由于二极管的单向导向性使得电容器电量保持不变,根据E=知两板场强变大,小球将向上运动,B错误;若A、B两极板间插入电介质,根据C=可知C变大,根据Q=CU可知电容器带电量增加,C错误;若A、B两极板间插入金属板,相当d减小,根据C=可知C变大,电容器充电,根据E=,则E变大,小球将向上运动,D正确。
6.如图甲所示,A、B是一条竖直电场线上的两点,在A点由静止释放一带正电的小球,小球将沿此电场线从A点向B点运动,其v2-x图像如图乙所示,已知小球质量为m,电荷量为q,A、B间高度差为h,重力加速度为g,不计空气阻力。下列说法中正确的是( )
A.沿电场线由A到B,电势逐渐降低
B.小球从A运动到B的过程中,电势能逐渐减小
C.A、B两点的电势差UAB=
D.该电场为匀强电场,其电场强度大小为
【答案】D
【解析】小球运动的v2-x图像是一条直线说明,小球做匀变速直线运动,且v2-x图像的斜率为2a,则通过计算有a=0.5g,说明小球受到的电场力方向向上,小球带正电则电场线的方向也向上,则沿电场线由A到B,电势逐渐升高,A错误;小球受到的电场力向上,而小球运动的位移向下,则电场力做负功,小球从A运动到B的过程中电势能逐渐增大,B错误;小球从A运动到B的过程中根据动能定理有mgh-qUAB=mv2,得UAB=,C错误;小球做匀变速直线运动,则电场应为匀强电场,根据匀强电场电势差与电场强度的关系有,则D正确。
7.(多选)如图所示,LMN是竖直平面内固定的光滑绝缘轨道,MN水平且足够长,LM下端与MN相切。质量为m的带正电小球B静止在水平面上,质量为2m的带正电小球A从LM上距水平面高为h处由静止释放,在A球进入水平轨道之前,由于A、B两球相距较远,相互作用力可认为零,A球进入水平轨道后,A、B两球间相互作用视为静电作用,带电小球均可视为质点。已知A、B两球始终没有接触。重力加速度为g。则下列说法正确的是( )
A.A球刚进入水平轨道的速度大小为
B.A、B两球相距最近时,A、B两球系统的电势能Ep=mgh
C.A球最终的速度vA为
D.B球最终的速度vB为
【答案】ACD
【解析】对A球下滑的过程,据机械能守恒得2mgh=×2mv02,v0=,故A正确;A球进入水平轨道后,两球系统动量守恒,当两球相距最近时有共速2mv0=(2m+m)v,v=,根据能的转化和守恒定律2mgh=(2m+m)v2+Epm,得Epm=mgh,故B错误;当两球相距最近之后,在静电斥力作用下相互远离,两球距离足够远时,相互作用力为零,系统势能也为零,速度达到稳定,2mv0=2mvA+mvB,×2mv02=×2mvA2+mvB2,得vA=,vB=,故CD正确。
8.(多选)将两点电荷分别固定在x轴上的A、B两点,其坐标分别为(-2,0)和(4,0),A处点电荷带电量绝对值为Q,两点电荷连线上各点电势φ随x变化的关系如图所示,x=0处电势最低。x轴上M、N两点的坐标分别为(1,0)和(-1,0),静电力常量为k,则下列说法正确的是( )
A.B处电荷量绝对值为4Q,且两点电荷属于异种电荷
B.M点的电场强度大于N点的电场强度
C.N点电场强度大小为
D.负的试探电荷由M点运动到N点的过程,电势能先增大后减小
【答案】CD
【解析】φ-x图象的切线斜率表示电场强度,则可知原点O处合场强为零,且电势均为正,则两点电荷均为正电荷,故A错误;φ-x图象的切线斜率表示电场强度,则可知M点的电场强度小于N点的电场强度,故B错误;设B处点电荷带电量绝对值为Q′,由A项知原点O处合场强为零,则有,解得Q′=4Q,在N点,根据电场的叠加原理有,故C正确;由图可知,负的试探电荷由M点运动到N点的过程,电势先降低后升高,由Ep=qφ知电势能先增大后减小,故D正确。
9.(多选)如图所示,ACB为固定的光滑半圆形轨道,轨道半径为R,A、B为水平直径的两个端点,AC为圆弧,MPQO为竖直向下的有界匀强电场(边界上有电场),电场强度的大小。一个质量为m,电荷量为-q的带电小球,从A点正上方高为H处由静止释放,并从A点沿切线进入半圆轨道,小球运动过程中电量不变,不计空气阻力,已知重力加速度为g。关于带电小球的运动情况,下列说法正确的是( )
A.若H=3R小球从A到C的过程中,电势能增加2mgR
B.若H>R,则小球一定能到达B点
C.若小球到达C点时对轨道压力为6mg,则H=4.5R
D.若H=R,则小球刚好沿轨道到达C点
【答案】AC
【解析】若H=3R小球从A到C的过程中,电场力做负功,电势能增加,则有ΔEp=EqR=2mgR,故A正确;小球刚好能到B点时,由弹力提供向心力,则满足过B点的速度vB≥0,由A到B的动能定理可知mgH-qER=mvB2-0,,解得h≥2R,故B错误;过C点的压力为6mg,则由牛顿第三定律可知轨道的支持力为6mg,对C点受力分析有N+qE-mg=,从A到C由动能定理有mg(H+R)-qER=mvC2-0,解得H=4.5R,故C正确;若H=R,假设小球可以沿轨道到达C点,根据动能定理有mg(H+R)-qER=mvC2-0,解得vC=0,故在C点需要的向心力为零,但电场力和重力的合力向上,大于需要的向心力,不能沿着轨道过C点,说明球到达C点前已经离开轨道,故D错误。
10.(多选)如图甲所示,平行金属板P、Q上有两个正对小孔,P板接地,Q板的电势φQ随时间变化的情况如图乙所示,完全相同的正离子以相同的初速度v0陆续从P板小孔飞向Q板小孔,t=0时刻从P板小孔飞入的离子在t=时刻到达Q板小孔且速度刚好减小到零(未返回)。不计力、小孔对板间电场的影响、离子间的相互作用。则下列说法正确的是( )
A.所有离子在板间运动的时间都相等
B.t=时刻飞入P板小孔的离子到达Q板小孔时的速度为v0
C.t=时刻飞入P板小孔的离子到达Q板小孔时的速度为v0
D.若将两板距离变成原来的两倍,则t=0时刻从P板小孔飞入的离子到达Q板时的速度仍为零
【答案】BC
【解析】由于离子在两板之间的运动过程中,只受到电场力的作用,不同时间释放的离子初速度相同,但受到电场力作用的时间不同,所以运动时间不可能都相等,A错误;在t=0进入的离子,在t=到达Q板且速度刚好减小到零,根据动量定理,有-F=-mv0,在进入的离子,在电场中运动了时间,且在下个周期前到达Q板,根据动量定理,有-F=mv-mv0,可得v=v0,B正确;两极板间距离d=v0=v0T,在进入的离子,在前时间内做匀速直线运动,距离d=v0=d,接着在电场中运动的距离d2=d-d=d,根据动能定理,在t=0进入的离子-Fd=mv02,在进入的离子-Fd2=mv12-mv02,解得v1=v0,C正确;若两板间的距离变为原来的2倍,电场强度变为原来的一半,离子做减速运动的加速度也变为原来的一半,在时刻电场消失时,离子的速度并不为0,接着做匀速直线运动,在下个周期之前离开Q板,所以到达Q板的速度并不为0,D错误。
11.一端弯曲的光滑绝缘轨道ABN固定在竖直平面上,如图所示,AB段水平、BN段是半径为R的半圆弧,有一个正点电荷固定在圆心O处。一质量为m带正电小环,在水平恒力F=mg作用下从C点由静止开始运动,到B点时撤去外力,小环继续运动,发现刚好能到达绝缘轨道上与圆心等高的M点,已知CB间距为R,小环在圆轨道上时受到圆心处的点电荷的静电力大小为2mg。
(1)求小环从C运动到M过程中,点电荷Q的电场力对它做的功;
(2)若水平恒力大小改为2F,则小环在能达到的最高点N时的速度大小为多少?
(3)若小环在距离B点R的D点以向右的初速度运动,在静电力的作用下运动到B点的速度恰好为0,那么在D点施加最小的恒定外力作用由静止开始运动,小环在圆轨道上能到达的最大高度值多少?
【解析】(1)小环从C运动到M过程,根据动能定理:
F·R+WCM-mgR=0
解得:WCM=-mgR。
(2)小环从C运动到N过程,根据动能定理:
2F·R+WCM-mg·2R=mv2
解得:。
(3)小环从D运动到B过程,根据动能定理:WDB=0-mv02
可得
在D点小环受到圆心位置的点电荷的静电力水平方向最大,其最大值为。那么小环受到的外力至少为,否则小环将向左运动。所以从D到圆轨道最高点的过程,根据动能定理:
解得:h=(-2)R。
12.如图所示,在光滑水平面上方存在电场强度大小E=2×104 N/C、方向水平向左的有界匀强电场,电场右边界如图中的虚线所示,左边界为竖直墙壁,电场宽度d=4.75 m。长L=4 m、质量M=2 kg的不带电绝缘长木板P原先静止在水平面上。一可视为质点的质量m=1 kg、电荷量q=1×10-4 C的带正电金属块Q从木板的右端以v0=3 m/s的速度水平向左滑上木板,两者相对静止后再进入电场,木板与墙壁发生碰撞的时间极短且碰撞无机械能损失。已知金属块与木板间的动摩擦因数μ=0.4,最大静摩擦力等于滑动摩擦力,重力加速度g=10 m/s2。求:
(1)木板与墙壁第一次碰撞前瞬间的速度大小;
(2)木板与墙壁第二次碰撞前瞬间的速度大小。
【解析】(1)金属块滑上木板后,金属块减速,木板加速,达到共同速度v1之后进入电场区域,根据动量守恒定律有:mv0=(m+M)v1
设这一过程两者相对运动的距离为s1,根据能量守恒定律有:
μmgs1=mv02-(M+m)v12
解得:v1=1 m/s,s1=0.75 m
金属块进入电场之后,假设两者以相同的加速度运动,则有:qE=(M+m)a共
解得:a共= m/s2
再隔离木板,根据牛顿第二定律有:Ff=Ma共= N<Ffm=μmg=4 N
故假设成立
设木板与墙壁第一次碰撞前瞬间的速度大小为v2,对整体根据动能定理有:
qE[d-(L-s1)]=(M+m)v22-(M+m)v12
解得:v2= m/s。
(2)木板与墙壁碰撞后,金属块和木板都以大小为v2的初速度相向做匀减速运动,加速度大小分别为:
a1==2 m/s2,a2==2 m/s2
两者速度同时减为零时,各自的位移大小为x1'=x2'==0.75 m
速度同时减为零后,整体又向左做匀加速运动,设木板与墙壁第二次碰撞前瞬间的速度大小为v3,对整体根据动能定理有:qEx2'=(M+m)v32
解得v3=1 m/s
高考物理第二轮复习第25讲电场(下)2017新题赏析课后练习含答案: 这是一份高考物理第二轮复习第25讲电场(下)2017新题赏析课后练习含答案,共5页。
高考物理第二轮复习第24讲电场(上)2017新题赏析课后练习含答案: 这是一份高考物理第二轮复习第24讲电场(上)2017新题赏析课后练习含答案,共7页。试卷主要包含了2 m和0,6×10-19 C等内容,欢迎下载使用。
高中物理高考 专题16 电场力的性质(练习)(教师版): 这是一份高中物理高考 专题16 电场力的性质(练习)(教师版),共22页。