所属成套资源:人教版八年级数学下册全册教学课件PPT+导学案+同步练习(含答案)
人教版八年级下册18.2.1 矩形课后复习题
展开
这是一份人教版八年级下册18.2.1 矩形课后复习题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
18.2.1矩形(2)同步练习姓名:__________班级:__________学号:__________一、选择题1.下列叙述错误的是( )A. 平行四边形的对角线互相平分 B. 对角线互相平分的四边形是平行四边形C. 矩形的对角线相等 D. 对角线相等的四边形是矩形2.如图,四边形ABCD的对角线AC、BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD为矩形的是( )A. AB=CD B. OA=OC,OB=OD C. AC⊥BD D. AB∥CD,AD=BC3.如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD. 以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是( )A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对4.矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为( )A. 5 B. C. 6 D. 5.如图,E,F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,则图中阴影部分的面积为( )A. 15 B. 20 C. 35 D. 406.如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有( )个 A. 2 B. 3 C. 4 D. 57.如图所示,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是 ( )A. B. 2 C. D. 28.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A. 40° B. 35° C. 20° D. 15°9.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=2,∠ABE=45°,则DE的长为( )A. 2-2 B. -1 C. -1 D. 2-10.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是( )A. 150米 B. 200米 C. 300米 D. 400米二、填空题11.如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5cm,则BD=________.12.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________13.如图,矩形ABCD中,AB=8cm,BC=3cm,E是DC的中点,BF=FC,则四边形DBFE的面积为_______ cm2.14.如图,在△ABC,AB=AC,点D为BC的中点,AE是∠BAC外角的平分线,DE//AB交AE于E,则四边形ADCE的形状是___________.15.已知:如图,矩形ABCD中,E,F是CD的两个点,EG⊥AC,FH⊥AC,垂足分别为G,H,若AD=2,DE=1,CF=2,且AG=CH,则EG+FH=_____.16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6 cm,BC=8 cm,则△AEF的周长为________cm.三、解答题17.如图,Rt△ABE与Rt△DCF关于直线m对称,已知∠B=90°,∠C=90°,连接EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD是矩形.18.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积19.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的平分线.20.如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.⑴求证:ΔABF≌ΔEDF;⑵将折叠的图形恢复原状,点F与BC边上的点G正好重合,连接DG,若AB=6,BC=8,求DG的长.21.如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.(1)求证:△ABG≌△CDE;(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由. 参考答案1.D【解析】A. 平行四边形的对角线互相平分,正确,不符合题意;B. 对角线互相平分的四边形是平行四边形,正确,不符合题意;C. 矩形的对角线相等,正确,不符合题意;D. 对角线相等的四边形是矩形,也可能是等腰梯形,也可能是一般四边形,故错误,符合题意,故选D.2.B【解析】解:A.由AB=DC,AC=BD无法判断四边形ABCD是矩形.故错误;B.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故正确;C.由AC⊥BD,AC=BD无法判断四边形ABCD是矩形,故错误.D.由AB∥CD,AC=BD无法判断四边形ABCD是矩形,故错误.故选B.点睛:本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形,属于中考常考题型.3.A【解析】由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.4.B【解析】过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG,EG=AD,∴EG=AD=BC=7,MG=DG−DM=3−2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM====.故选B.点睛:本题考查了矩形的判定、勾股定理等知识,过E作EG⊥CD于G,利用矩形的判定可得,四边形AEGD是矩形,则AE=DG,EG=AD,于是可求MG=DG-DM=1,在Rt△EMG中,利用勾股定理可求EM.5.C【解析】试题解析:连接EF,由图可知 ,那么 ,所以 ,同理, ,则,故本题应选C.6.B【解析】试题解析:由图可知, ,因为 ,所以 ,故①正确;因为 ,所以 ,由于 , ,所以 ,则 ,故②正确;在△ABG与△HEC中, ,从而两三角形不全等,故③错误;过点A作AM⊥BG于点M,由图可知 ,而 ,即 ,则 ,故④错误;因为 , , ,所以 ,又因为 ,所以 ,则,故⑤正确.综上所述,正确的结论有3个,故选B.点睛:矩形的对角线相等且相互平分.7.A【解析】先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,因为AD∥BC, ∠B=90°,则可判定四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.8.C【解析】∵△ABE沿AE折叠到△AEF,∴∠BAE=∠FAE,∵∠AEB=55°,∠ABE=90°,∴∠BAE=90°−55°=35°,∴∠DAF=∠BAD−∠BAE−∠FAE=90°−35°−35°=20°,故答案为:20°,故选C.9.A【解析】∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE.∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°.∵∠ABE=45°,∴∠ABE=AEB=45°.∴AB=AE=2.∵由勾股定理得:BE= =,∴BC=BE=.∴DE=AD-AE=BC-AB=-2故选:A.点睛:本题考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键.10.C【解析】试题分析:根据题意设小长方形的长为x,宽为y,则可知2(2x+3y)=700,且2y+x=2x,解得y=50,x=100,所以小长方形的周长为300米.故选:C.11. 矩形 5cm【解析】试题解析:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形.∵∠ABC=90°,∴四边形ABCD是矩形。∴AC=BD∵AC=5cm∴BD=5cm12.①⑤【解析】解:要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.13.8【解析】试题解析:∵矩形ABCD中,AB=8cm,BC=3cm,E是DC的中点,BF=FC,∴∠C=90°,AB=DC=8cm,DE=CE=4cm,CF=2cm,BF=1cm,∴四边形DBFE的面积是S△BDC-S△CEF=×8cm×3cm-×2cm×4cm=8cm214.矩形【解析】∵AB=AC,
∴∠B=∠ACB,
∵AE是∠BAC的外角平分线,
∴∠FAE=∠EAC,
∵∠B+∠ACB=∠FAE+∠EAC,
∴∠B=∠ACB=∠FAE=∠EAC,
∴AE∥CD,
又∵DE∥AB,
∴四边形EABD是平行四边形,
∴AE平行且等于BD,
又∵BD=DC,
∴AE平行且等于DC,
故四边形ADCE是平行四边形,
又∵∠ADC=90°,
∴平行四边形EADC是矩形.
即四边形EADC是矩形.故答案是:矩形。【点睛】首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.15. 【解析】试题解析:如图所示,过E点作EM⊥AB交AB于点M,延长EG交AB于点Q,在△AQG和△CFH中, ,所以△AQG≌△CFH(ASA), FH=QG,AQ=CF=2.∴在△AQG中,MQ=1,EM=2,EQ=EG+GQ=EG+FH=.16.9【解析】利用勾股定理求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解. 解:由勾股定理得,AC===10cm,∵四边形ABCD是矩形,∴OA=OD=AC=×10=5cm,∵点E、F分别是AO、AD的中点,∴EF=OD=cm,AF=×8=4cm,AE=OA=cm,∴△AEF的周长=+4+=9cm.故答案为:9.17.证明见解析.【解析】试题分析:先利用对称证明ABCD是平行四边形,因为∠B=90°,所以四边形ABCD是矩形.试题解析:解:∵Rt△ABE与Rt△DCF关于直线m对称,∴AB=DC.∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上,∴AB∥CD.∴四边形ABCD是平行四边形.∵∠B=90°,∴平行四边形ABCD是矩形.18.12.【解析】试题分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.试题解析:解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.点睛:本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.19.(1)证明见解析;(2)见解析【解析】试题分析:(1)根据已知条件易证四边形BFDE是平行四边形,再证明∠DEB=90°即可得结论;(2)根据已知条件证明AD=DF,根据等腰三角形的性质可得∠DAF=∠DFA;再由AB∥CD,可得∠DFA=∠FAB.即可得∠DAF=∠FAB,结论得证.试题解析: 证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵CF=AE,∴BE=DF.又∵BE∥DF,∴四边形BFDE为平行四边形.∵DE⊥AB,∴∠DEB=90°.∴四边形BFDE是矩形.(2)∵四边形BFDE是矩形,∴∠BFD=90°.∴∠BFC=90°.在Rt△BFC中,由勾股定理,得BC===10.∴AD=BC=10.又∵DF=10,∴AD=DF.∴∠DAF=∠DFA.∵AB∥CD,∴∠DFA=∠FAB.∴∠DAF=∠FAB.∴AF是∠DAB的平分线.20.(1)证明见解析;(2)【解析】试题分析:(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°,再加上一对对顶角相等,可证出△ABF≌△EDF;(2)利用折叠知识及勾股定理可得出四边形DG的长.试题解析:证明:在矩形ABCD中,AB=CD, ,由折叠的性质可知:DE=CD, ,∴AB=DE, ,又∵,∴△ABF≌△EDF(AAS)(2)解:∵AD//BC,∴,由折叠的性质可知: ∴ ∴BG=DG设GC为,则BG=DG=8-x在Rt△DCG中,由勾股定理可得: 解得: 21.(1)证明见解析;(2)矩形;(3).【解析】试题分析:(1)根据角平分线的定义以及平行四边形的性质,即可得到AB=CD,∠BAG=∠DCE,∠ABG=∠CDE,进而判定△ABG≌△CDE;(2)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;(3)根据含30°角的直角三角形的性质,得到BG,AG,BF,CF,进而得出EF和GF的长,可得四边形EFGH的面积.试题解析:解:(1)∵GA平分∠BAD,EC平分∠BCD,∴∠BAG=∠BAD,∠DCE=∠DCB,∵▱ABCD中,∠BAD=∠DCB,AB=CD,∴∠BAG=∠DCE,同理可得,∠ABG=∠CDE,在△ABG和△CDE中,∵∠BAG=∠DCE,AB=CD,∠ABG=∠CDE,∴△ABG≌△CDE(ASA);(2)四边形EFGH是矩形.证明:∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;(3)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG==CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=,∴EF=﹣=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.点睛:本题主要考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.22.(1)证明见解析;(2)5;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明见解析.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.试题解析:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF=6,∴EF==10,∴OC=EF=5;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形. 证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.
相关试卷
这是一份初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.1 矩形课堂检测,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份数学八年级下册18.2.1 矩形第2课时课后练习题,共11页。试卷主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
这是一份人教版八年级下册18.2.1 矩形精品当堂检测题,共10页。试卷主要包含了矩形的对角线一定具有的性质是,下列命题中,假命题是等内容,欢迎下载使用。