初中数学北师大版七年级下册1 两条直线的位置关系优秀ppt课件
展开1.了解垂线的有关概念、性质及画法,了解点到直 线的距离的概念; 2.能够运用垂线的有关性质进行运算,并解决实际 问题.(重点、难点)
观察下面图片,你能找出其中相交的直线吗?它们有什么特殊的位置关系?
知识点1 垂线的概念
在相交线的模型中,固定木条a,转动木条b,当b的位置变化时,a、b所成的角α也会发生变化.
两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直.
注意:两条线段互相垂直是指这两条线段所在的直线互相垂直.
2、1两条直线的位置关系(2)
如果直线AB与直线CD垂直,那么可记作:AB⊥CD(或CD⊥AB). 如果用l、m表示这两条直线,那么直线l与直线m垂直,可记作:l⊥m(或m ⊥ l). 把互相垂直的两条直线的交点叫作垂足(如图中的O点).
例1 如图,直线BC与MN相交于点O,AO⊥BC,∠BOE=∠NOE,若∠EON=20°,求∠AOM和∠NOC的度数.
解:∵∠BOE=∠NOE,∴∠BON=2∠EON=40°,∴∠NOC=180°-∠BON =180°-40°=140°, ∠MOC=∠BON=40°.∵AO⊥BC,∴∠AOC=90°,∴∠AOM=∠AOC-∠MOC=90°-40°=50°,∴∠NOC=140°,∠AOM=50°.
你能借助三角尺在一张白纸上画出两条互相垂直的直线吗?
如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?
你能用纸折出两条互相垂直的直线吗?
知识点2 垂线的画法及基本事实
(1)画已知直线l的垂线能画几条?(2)过直线l上的一点A画l的垂线,这样的垂线能 画几条?(3)过直线l外的一点B画l的垂线,这样的垂线能 画几条?
问题:这样画l的垂线可以画几条?
如图,已知直线 l,作l的垂线.
1.放2.靠3.移4.画
如图,已知直线 l 和l上的一点A ,作l的垂线.
问题:这样画l的垂线可以画几条?
如图,已知直线 l 和l外的一点A ,作l的垂线.
根据以上操作,你能得出什么结论
垂线的性质:平面内,过一点有且只有一条直线与已知直线垂直.
注意:1.“过一点”中的点,可以在已知直线上,也可 以在已知直线外;2.“有且只有”中,“有”指存在,“只有”指 唯一性.
知识点3 点到直线的距离
如图,从A点向已知直线 l 画一条垂直的线段和几条不垂直的线段.
连接直线外一点与直线上各点的所有线段中垂线段最短.简单说成:垂线段最短
线段AD的长度叫做点A到直线l的距离.
例2 在灌溉时,要把河中的水引到农田P处,如何挖掘能使渠道最短?请画出图来,并说明理由.
当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足.
(1)过一点有且只有一条直线与已知直线垂直,(2)垂线段最短.
1.两条直线相交所成的四个角中,下列条件中能 判定两条直线垂直的是( ) A. 有两个角相等 B.有两对角相等 C. 有三个角相等 D.有四对邻补角
2.过点P 向线段AB 所在直线引垂线,正确的是( )
A B C D
4.找出图中互相垂直的线段:
AO ⊥ COBO ⊥DO
3.如图, AC⊥BC, ∠C=90° ,线段AC、BC、CD中最短 的是 ( ) A. AC B. BC C. CD D. 不能确定
5.(1)如图,若直线m、n相交于点O,∠1=90°,则 ; (2)若直线AB、CD相交于点O,且AB⊥CD,那么∠BOD = _________; (3)如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=_____,∠BOC的补角为 .
6.下列说法正确的是( ) A.线段AB叫做点B到直线AC的距离 B.线段AB的长度叫作点A到直线AC的距离 C.线段BD的长度叫作点D到直线BC的距离 D.线段BD的长度叫作点B到直线AC的距离
初中数学北师大版七年级下册1 两条直线的位置关系课堂教学ppt课件: 这是一份初中数学北师大版七年级下册1 两条直线的位置关系课堂教学ppt课件,文件包含212两条直线的位置关系pptx、21两条直线的位置关系第2课时垂直doc等2份课件配套教学资源,其中PPT共32页, 欢迎下载使用。
数学七年级下册3 简单的轴对称图形习题ppt课件: 这是一份数学七年级下册3 简单的轴对称图形习题ppt课件,文件包含53-2ppt、第5章3第2课时线段的垂直平分线ppt、53第2课时线段垂直平分线的性质docx等3份课件配套教学资源,其中PPT共37页, 欢迎下载使用。
数学七年级下册1 两条直线的位置关系一等奖ppt课件: 这是一份数学七年级下册1 两条直线的位置关系一等奖ppt课件,文件包含212垂线课件pptx、212垂直教案doc等2份课件配套教学资源,其中PPT共24页, 欢迎下载使用。