


2021年高考数学解答题专项练习《统计与概率》一(含答案)
展开
这是一份2021年高考数学解答题专项练习《统计与概率》一(含答案),共10页。试卷主要包含了4+13,5×9=256,6,seq \\al=37,从这6位同学中选出2位同学,等内容,欢迎下载使用。
2021年高考数学解答题专项练习《统计与概率》一1.下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由. 2.某班级甲、乙两个小组各有10位同学,在一次期中考试中,两个小组同学的成绩如下:甲组:94,69,73,86,74,75,86,88,97,98;乙组:75,92,82,80,95,81,83,91,79,82.(1)画出这两个小组同学成绩的茎叶图,判断哪一个小组同学的成绩差异较大,并说明理由;(2)从这两个小组成绩在90分以上的同学中,随机选取2人在全班介绍学习经验,求选出的2位同学不在同一个小组的概率. 3.某校1200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:(1)求a、b、c的值;(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分. 4.某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康、同心共筑中国梦”主题开展全民健身活动.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(1)若电视台记者要从抽取的群众中选一人进行采访,估计被采访人恰好在第1组或第4组的概率;(2)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成志愿者服务队,求至少有1名女性群众的概率. 5.某品牌2019款汽车即将上市,为了对这款汽车进行合理定价,某公司在某市五家4S店分别进行了两天试销售,得到如下数据:(1)分别以五家4S店的平均单价与平均销量为散点,求出单价与销量的回归直线方程=x+;(2)在大量投入市场后,销量与单价仍服从(1)中的关系,且该款汽车的成本为12万元/辆,为使该款汽车获得最大利润,则该款汽车的单价约为多少万元(保留一位小数)?附:=,=-. 6.某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.(1)请完成上面的列联表;(2)根据列联表中的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”.参考公式与临界值表:K2=. 7.某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率. 8.某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲,乙,丙三地实施人工降雨,其实验统计结果如下:假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:(1)求甲、乙、丙三地都恰为中雨的概率;(2)考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨即达到理想状态,乙地必须是大雨才达到理想状态,记“甲,乙,丙三地中缓解旱情的个数”为随机变量X,求X的分布列和数学期望. 9. “双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用x(单位:万元)和利润y(单位:十万元)之间的关系,得到下列数据:(1)请用相关系数r说明y与x之间是否存在线性相关关系(当|r|>0.81时,说明y与x之间具有线性相关关系);(2)根据(1)的判断结果,建立y与x之间的回归方程,并预测当x=24时,对应的利润为多少(,,精确到0.1).附参考公式:回归方程中=x+中和最小二乘估计分别为=,=- ,相关系数r=.参考数据:iyi=241,=356,≈8.25,=6. 10.某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2018年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:(1)求这1 000名购物者获得优惠券金额的平均数;(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.
答案解析11.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 12.解:(1)茎叶图如图:由茎叶图中数据分布可知,甲组数据分布比较分散,乙组数据分布相对集中,所以甲组同学的成绩差异较大.(也可通过计算方差说明,s=101.6,s=37.4,s>s)(2)设甲组成绩在90分以上的三位同学为A1,A2,A3;乙组成绩在90分以上的三位同学为B1,B2,B3.从这6位同学中选出2位同学,共有15个基本事件,列举如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,B3);(A2,A3),(A2,B1),(A2,B2),(A2,B3);(A3,B1),(A3,B2),(A3,B3);(B1,B2),(B1,B3);(B2,B3).其中,从这6位同学中选出的2位同学不在同一个小组的基本事件有9个,所以所求概率P==. 13.解:(1)由题意可得,b=1-(0.015+0.125+0.5+0.31)=0.05,a=200×0.05=10,c=200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.所以P===0.81.(3)这次数学测验样本的平均分为==73,所以这次数学测验的年级平均分大约为73分. 14.解:(1)设第1组[20,30)的频率为f1,则由题意可知,f1=1-(0.035+0.030+0.020+0.010)×10=0.05.被采访人恰好在第1组或第4组的频率为0.05+0.020×10=0.25.故估计被采访人恰好在第1组或第4组的概率为0.25.(2)∵第1组[20,30)的人数为0.05×120=6.∴第1组中共有6名群众,其中女性群众共3名.设至少有1名女性群众为事件A,全都是男性群众为事件B,故事件A与事件B为对立事件,P(A)=1-P(B)=1-=1-=.故至少有1名女性群众的概率为. 15.解:(1)∵五家4S店的平均单价和平均销量分别为(18.3,83)(18.5,80),(18.7,74),(18.4,80),(18.6,78),∴==18.5,==79,===-20.∴=-=79-(-20)×18.5=79+370=449,∴=-20x+449.(2)设该款汽车的单价应为x万元,则利润f(x)=(x-12)(-20x+449)=-20x2+689x-5 388,f′(x)=-40x+689,令-40x+689=0,解得x≈17.2,故当x≈17.2时,f(x)取得最大值.∴要使该款汽车获得最大利润,该款汽车的单价约为17.2万元. 16.解:(1)列联表如下:(2)根据列联表中的数据,得到K2=≈7.486<10.828.因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”. 17.解:(1)由题意知,从6个国家中任选2个国家,其一切可能的结果组成的基本事件有:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{A1,A2},{A1,A3},{A2,A3},共3个.则所求事件的概率为P==.(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9个.包括A1但不包括B1的事件所包含的基本事件有:{A1,B2},{A1,B3},共2个,则所求事件的概率为P=. 18.解:19.解:(1)由题意得=6,=4.又iyi=241, ≈8.25,=6,所以r=≈≈0.99>0.81,所以y与x之间存在线性相关关系.(2)因为==≈0.7,=- ≈4-0.7×6=-0.2,所以回归直线方程为=0.7x-0.2.当x=24时,=0.7×24-0.2=16.6,所以预测当x=24时,对应的利润为16.6. 20.解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:这1 000名购物者获得优惠券金额的平均数为(50×400+100×300+150×280+200×20)=96.(2)由获得优惠券金额y与购物金额x的对应关系及(1)知P(y=150)=P(0.6≤x<0.8)=0.28,P(y=200)=P(0.8≤x≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.
相关试卷
这是一份2021年高考数学解答题专项练习《统计与概率》五(含答案),共11页。
这是一份2021年高考数学解答题专项练习《统计与概率》二(含答案),共9页。试卷主要包含了63+0,4-7×8×4等内容,欢迎下载使用。
这是一份2021年高考数学答题专项练习《统计与概率》五(含答案)
