2021年中考数学:专题23 勾股定理(知识点串讲)
展开专题23 勾股定理
【知识要点】
知识点一 直角三角形与勾股定理
直角三角形三边的性质:
1、 直角三角形的两个锐角互余。
2、 直角三角形斜边的中线,等于斜边的一半。
3、 直角三角形中30°角所对的边是斜边的一半。
勾股定理概念:直角三角形两直角边的平方和等于斜边的平方;
表示方法:如果直角三角形的两直角边分别为,,斜边为,那么
变式:
1)a²=c²- b²
2)b²=c²- a²
适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。
勾股定理的证明:
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是:
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
方法一:,,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
四个直角三角形的面积与小正方形面积的和为
大正方形面积为
所以
方法三:,,化简得证
知识点二 勾股数
勾股数概念:能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数
常见的勾股数:如;;;等
扩展:用含字母的代数式表示组勾股数:
1)(为正整数);
2)(为正整数)
3)(,为正整数)
注意:每组勾股数的相同整数倍,也是勾股数。
【考查题型】
考查题型一 勾股定理理解三角形
典例1.在中,直径AB=15,弦DE⊥AB于点C.若OC:OB=3 :5,则DE的长为( )
A.6 B.9 C.12 D.15
变式1-1.如图,在中,,若,则的长为( )
A.8 B.12 C. D.
变式1-2.如图,Rt△ABC中,∠ACB = 90°,AB = 5,AC= 3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C' ,则四边形ABC'A'的面积是 ( )
A.15 B.18 C.20 D.22
变式1-3.某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是( )
A. B. C. D.
考查题型二 勾股定理与网格问题
典例2.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )
A. B. C. D.
变式2-1.如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为( ).
A. B. C. D.
变式2-2.如图所示,的顶点在正方形网格的格点上,则的值为( )
A. B. C.2 D.
考查题型三 利用勾股定理解决折叠问题
典例3.如图,把某矩形纸片沿,折叠(点E、H在边上,点F,G在边上),使点B和点C落在边上同一点P处,A点的对称点为、D点的对称点为,若,为8,的面积为2,则矩形的长为( )
A. B. C. D.
变式3-1.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF上的点处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为( )
A. B. C. D.
变式3-2.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把沿着AD翻折,得到,DE与AC交于点G,连接BE交AD于点F.若,,,的面积为2,则点F到BC的距离为( )
A. B. C. D.
考查题型四 利用勾股定理证明线段的平方关系
典例4.如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是( )
A.a2+b2=5c2 B.a2+b2=4c2 C.a2+b2=3c2 D.a2+b2=2c2
变式4-1.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形,对角线交于点.若,则__________.
变式4-2.如图,在中,,点P在斜边上,以为直角边作等腰直角三角形,,则三者之间的数量关系是_____.
考查题型五 利用勾股定理解决实际问题(选题类型不限于中考真题及模拟)
1.求梯子滑落高度
典例5.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了( )米.
A.0.5 B.1 C.1.5 D.2
变式5-1. 如图所示,一架梯子AB长2.5米,顶端A靠在墙AC上,此时梯子下端B与墙角C的距离为1.5米,当梯子滑动后停在DE的位置上,测得BD长为0.9米.则梯子顶端A沿墙下移了______米.
变式5-2.如图,墙面AC与地面BC垂直,一个梯子AB长2.5 米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了_____米.
2.求旗杆高度
典例6.从电线杆离地面8米处拉一根长为10m的缆绳,这条缆绳在地面的固定点距离电线杆底部有( )m.
A.2 B.4 C.6 D.8
变式6-1.如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆处,此时绳子末端距离地面,则绳子的长度为____.
3.求蚂蚁爬行距离
典例7.如图,圆柱的高为8cm,底面半径为cm,一只蚂蚁从点沿圆柱外壁爬到点处吃食,要爬行的最短路程是( )
A.6cm B.8cm C.10cm D.12cm
变式7-1.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是( )
A.13米 B.12米 C.5米 D.米
4.求大树折断前的高度
典例8.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )
A.3 B.5 C. D.4
变式8-1.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺.问折断处高地面的距离为( )
A.5.45尺 B.4.55尺 C.5.8尺 D.4.2尺
变式8-2.如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)
5.求水杯中筷子长度问题
典例9.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是尺.根据题意,可列方程为( )
A.B.C.D.
变式9-1.如图,将一根长12cm的筷子置于底面半径为3cm,高为8cm的圆柱形杯子中,则筷子露在杯子外面的长度h至少为_______cm.
变式9-2.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.
6.解决航海问题
典例10.如图,快艇从地出发,要到距离地10海里的地去,先沿北偏东70°方向走了8海里,到达地,然后再从地走了6海里到达地,此时快艇位于地的( ).
A.北偏东20°方向上 B.北偏西20°方向上
C.北偏西30°方向上 D.北偏西40°方向上
变式10-1.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行_____海里就开始有触礁的危险.
变式10-2.一艘轮船在小岛的北偏东方向距小岛海里的处,沿正西方向航行小时后到达小岛的北偏西的处,则该船行驶的速度为_____海里/小时.
7.求河宽
典例11.如图,为了测量池塘的宽度,在池塘周围的平地上选择了、、三点,且、、、四点在同一条直线上,,已测得,,,,则池塘的宽度( )
A. B. C. D.
变式11-1.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m,他在水中实际游了520m,那么该河的宽度为( )
A.440m B.460m C.480m D.500m
变式11-2.如图,为了求出湖两岸A、B两点之间的距离,观测者从测点A、B分别测得,又量得,,则A、B两点之间的距离为( )
A.10m B. C.12m D.13m
8.求台阶上的地毯长度
典例12.地面上铺设了长为20cm,宽为10cm的地砖,长方形地毯的位置如图所示.那么地毯的长度最接近多少?( )
A.50cm B.100cm C.150cm D.200cm
变式12-1.在高5m,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要( )
A.13m B.5m C.12m D.17m
变式12-2.一个三级台阶,它的每一级的长宽和高分别为、、,和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点最短路程为( )
A. B. C. D.
9.判断是否超速
典例13.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是__m/s.
变式13-1.《中华人民共和国道路交通管理条例》规定,小汽车在城市街道上的行驶速度不得超过70km/h.如图所示,一辆小汽车在一条城市街道沿直道向处行驶.某一时刻刚好行驶到路对面车速检测仪正前方30m处的点,过了2s后,测得小汽车与车速检测仪之间的距离为50m,这辆小汽车________.(填“超速”或“不超速”)
变式13-2.如图,小明家(A)在小亮家(B)的正北方,某日,小明与小亮约好去图书馆(D),一小明行走的路线是A→C→D,小亮行走的路线是B→C→D,已知,,,,已知小明骑自行车速度为a km/分钟,小亮走路,速度为0.1km分钟。小亮出发20分钟后小明再出发,若小明在路上遇到小亮,则带上小亮一起去图书馆,为了使小亮能坐上小明的顺风车,则a的取值范围是________。
9.判断是否受台风影响
典例14.M 城气象中心测得台风中心在 M 城正北方向 240km 的 P 处,以每小时 45km 的速度向南偏东 30°的 PB 方向移动,距台风中心 150km 的范围内是受台风影响的区域,则 M 城 受台风影响的时间为( )小时.
A.4 B.5 C.6 D.7
变式14-1.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路上处距点米.如果火车行驶时,周围米以内会受到噪音的影响.那么火车在铁路上沿方向以千米/时的速度行驶时,处受噪音影响的时间为( )
A.秒 B.秒 C.秒 D.秒
变式14-2.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过( )小时它就会进入台风影响区
A.10 B.7 C.6 D.12
变式14-3.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点160m处有一所医院A,当卡车P沿道路ON方向行驶时,在以P为圆心,100米为半径的圆形区域内都会受到噪声的影响.若已知卡车的速度为250米/分钟,则卡车P沿道路ON方向行驶一次时,给医院A带来噪声影响的持续时间是__分钟.
9.利用勾股定理选址使到两地距离相等
典例15.一条河流的段长,在点的正北方处有一村庄,在点的正南方处有一村庄,在段上有一座桥,把建在何处时可以使到村和村的距离和最小,那么此时桥到村和村的距离和为( )
A.10 B. C.12 D.
变式15-1.如图,高速公路上有、两点相距,、为两村庄,已知,,于,于,现要在上建一个服务站,使得、两村庄到站的距离相等,则的长是( ).
A. B. C. D.
变式15-2.如图,要在距离地面5米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑到符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.1米,L3=7.8米,L4=10米四种备用材料中,拉线AC最好选用( )
A.L1 B.L2 C.L3 D.L4
变式15-3.如图,牧童家在B处,A、B两处相距河岸的距离AC、BD分别为500m和300m,且C、D两处的距离为600m,天黑牧童从A处将牛牵到河边去饮水,在赶回家,那么牧童最少要走( )
A.800m B.1000m C.1200m D.1500m
2020-2021学年第一章 勾股定理综合与测试知识点教案: 这是一份2020-2021学年第一章 勾股定理综合与测试知识点教案,文件包含北师大版初中数学章节复习8年级上册专题01勾股定理专题测试学生版doc、北师大版初中数学章节复习8年级上册专题01勾股定理专题测试教师版含解析doc、北师大版初中数学章节复习8年级上册专题01勾股定理知识点串讲学生版doc、北师大版初中数学章节复习8年级上册专题01勾股定理知识点串讲教师版含解析doc等4份教案配套教学资源,其中教案共35页, 欢迎下载使用。
2021年中考数学:专题33 相似形(知识点串讲): 这是一份2021年中考数学:专题33 相似形(知识点串讲),文件包含专题33相似形知识点串讲原卷中考数学复习docx、专题33相似形知识点串讲解析卷中考数学复习docx等2份教案配套教学资源,其中教案共45页, 欢迎下载使用。
2021年中考数学:专题29 旋转(知识点串讲): 这是一份2021年中考数学:专题29 旋转(知识点串讲),文件包含专题29旋转知识点串讲原卷版中考数学复习docx、专题29旋转知识点串讲解析卷中考数学复习docx等2份教案配套教学资源,其中教案共33页, 欢迎下载使用。