![2021年中考数学二轮复习《正方形》半小时优化练习 (含答案)第1页](http://img-preview.51jiaoxi.com/2/3/5898157/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年中考数学二轮复习《正方形》半小时优化练习 (含答案)第2页](http://img-preview.51jiaoxi.com/2/3/5898157/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年中考数学二轮复习《正方形》半小时优化练习 (含答案)第3页](http://img-preview.51jiaoxi.com/2/3/5898157/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021年中考数学二轮复习《正方形》半小时优化练习 (含答案)
展开
这是一份2021年中考数学二轮复习《正方形》半小时优化练习 (含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学二轮复习《正方形》半小时优化练习(时间:30分钟)一、选择题1.已知正方形的边长为2cm,则其对角线长是( )A.4cm B.8cm C.cm D.2cm2.菱形、矩形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角3.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( ) A.2对 B.3对 C.4对 D.5对4.一个围棋盘由18×18个边长为1的正方形小方格组成,一块边长为1.5的正方形卡片放在棋盘上,被这块卡片覆盖了一部分或全部的小方格共有n个,则n的最大值是( )A.4 B.6 C.10 D.125.如图,正方形ABCD的对角线AC与BD相交于O点,在BD上截取BE=BC,连接CE,点P是CE上任意一点,PM⊥BD于M,PN⊥BC于N,若正方形ABCD的边长为1,则PM+PN=( ) A.1 B. C. D.1+6.如图,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,正确的有( ) A.1个 B.2个 C.3个 D.4个 7.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为( ) 8.如图,点F是正方形ABCD边CD上的一个动点,BF的垂直平分线EM与对角线AC相交于点E,与BF相交于点M,连接BE、FE,EM=3,则△EBF的周长是( ) A.6+3 B.6+6 C.6﹣3 D.3+39.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为( )A.1.5 B.2.5 C.2.25 D.310.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )A.2 B. C. D.1二、填空题11.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是____度.12.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH为a,BH为b,则ab= .13.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为______m. 14.将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为 . 15.如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l3、l4、 l2上,若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为 cm2. 16.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=kx-1经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为 .三、解答题17.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.18.如图,已知在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.19.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.20.如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.21.如图,在正方形ABCD中,E是对角线BD上任意一点(BE>DE),CE的延长线交AD于点F,连接AE.(1)求证:△ABE∽△FDE;(2)当BE=3DE时,求tan∠1的值.
参考答案22.D23.C24.D25.C26.C27.A28.B29.B30.D31.答案为:22.5;32.答案为:48.33.答案为:.34.答案为:35.答案为:20;36.答案为:4.37.证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.38.39.证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD∵CD=HG,∠ECG=∠CGF=90°,FG=CG∴△DCG≌△HGF(SAS)∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=5,∴AD=CD=3,DE=2,EF=5∵AD∥EF∴=,且DE=2∴EM=40.解:(1)证明:正方形ABCD中,AC=BD,OA=0.5AC,OB=OD=0.5BD,所以OA=OB=OD,因为AC⊥BD,所以∠AOB=∠AOD=90°,所以∠OAD=∠OBA=45°,所以∠OAM=∠OBN,又因为∠EOF=90°,所以∠AOM=∠BON,所以△AOM≌△BON,所以OM=ON.(2)如图,过点O作OP⊥AB于P,所以∠OPA=90°,∠OPA=∠MAE,因为E为OM中点,所以OE=ME,又因为∠AEM=∠PEO,所以△AEM≌△PEO,所以AE=EP,因为OA=OB,OP⊥AB,所以AP=BP=0.5AB=2,所以EP=1.Rt△OPB中,∠OBP=45°,所以OP=PB=2,Rt△OEP中,OE=,所以OM=2OE=2,Rt△OMN中,OM=ON,所以MN=OM=2.41.(1)证明:在正方形ABCD中,∵AB=BC,∠ABE=∠CBE=∠FDE=45°,在△ABE与△CBE中,,∴△ABE≌△CBE,∴∠BAE=∠ECB,∵AD∥BC,∴∠DFE=∠BCE,∴∠BAE=∠DFE,∴△ABE∽△FDE;(2)连接AC交BD于O,设正方形ABCD的边长为a,∴BD=a,BO=OD=OC=a,∵BE=3DE,∴OE=OD=a,∴tan∠1=tan∠OEC==.
相关试卷
这是一份2021年中考数学二轮复习《圆》半小时优化练习 (含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年中考数学二轮复习《整式》半小时优化练习 (含答案),共3页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2021年中考数学二轮复习《实数》半小时优化练习 (含答案),共3页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)