考点25 概率—2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础
展开真题回顾
1.(2020•攀枝花)下列事件中,为必然事件的是( )
A.明天要下雨 B.|a|≥0
C.﹣2>﹣1 D.打开电视机,它正在播广告
【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.
【解析】根据题意,结合必然事件的定义可得:
A、明天要下雨不一定发生,不是必然事件,故选项不合题意;
B、一个数的绝对值为非负数,故是必然事件,故选项符合题意;
C、﹣2>﹣1,是不可能事件,故选项不合题意;
D、打开电视机,它不一定正在播广告,有可能是其他节目,故不是必然事件,故选项不合题意;
故选:B.
2.(2020•武汉)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( )
A.两个小球的标号之和等于1 B.两个小球的标号之和等于6
C.两个小球的标号之和大于1 D.两个小球的标号之和大于6
【分析】分别利用随机事件、必然事件、不可能事件的定义分别分析得出答案.
【解析】∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,
∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;
两个小球的标号之和等于6,是随机事件,符合题意;
两个小球的标号之和大于1,是必然事件,不合题意;
两个小球的标号之和大于6,是不可能事件,不合题意;
故选:B.
3.(2020•泰州)如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )
A.只闭合1个开关B.只闭合2个开关
C.只闭合3个开关D.闭合4个开关
【分析】根据题意分别判断能否发光,进而判断属于什么事件即可.
【解析】A、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;
B、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;
C、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;
D、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;
故选:B.
4.(2020•营口)某射击运动员在同一条件下的射击成绩记录如下:
根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )
A.0.90B.0.82C.0.85D.0.84
【分析】根据大量的实验结果稳定在0.82左右即可得出结论.
【解析】∵从频率的波动情况可以发现频率稳定在0.82附近,
∴这名运动员射击一次时“射中九环以上”的概率是0.82.
故选:B.
5.(2020•武汉)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )
A.B.C.D.
【分析】根据题意画出树状图得出所有等情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.
【解析】根据题意画图如下:
共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,
则恰好选中甲、乙两位选手的概率是;
故选:C.
6.(2020•北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )
A.B.C.D.
【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两次记录的数字之和为3的情况,再利用概率公式即可求得答案.
【解析】列表如下:
由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,
所以两次记录的数字之和为3的概率为,
故选:C.
7.(2020•襄阳)下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨
D.若两组数据的平均数相同,则方差小的更稳定
【分析】根据随机时间的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.
【解析】A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;
B、汽车累积行驶10000km,从未出现故障”是随机事件,故本选项错误;
C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;
D、若两组数据的平均数相同,则方差小的更稳定,故本选项正确;
故选:D.
8.(2020•长沙)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的不一定是红球
C.第一次摸出的球是红球的概率是
D.两次摸出的球都是红球的概率是
【分析】根据概率公式分别对每一项进行分析即可得出答案.
【解析】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;
B、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;
C、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是,故本选项正确;
D、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是,故本选项正确;
故选:A.
9.(2020•临沂)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( )
A.B.C.D.
【分析】根据题意画出树状图得出所有等可能的情况数,再找出恰好抽到马鸣和杨豪的情况数,然后根据概率公式即可得出答案.
【解析】根据题意画图如下:
共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,
则恰好抽到马鸣和杨豪的概率是;
故选:C.
10.(2020•达州)下列说法正确的是( )
A.为了解全国中小学生的心理健康状况,应采用普查
B.确定事件一定会发生
C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98
D.数据6、5、8、7、2的中位数是6
【分析】根据抽样调查与普查的区别、确定性事件的概念、众数和中位数的定义逐一求解可得.
【解析】A.为了解全国中小学生的心理健康状况,应采用抽样调查,此选项错误;
B.确定事件一定会发生,或一定不会发生,此选项错误;
C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98和99,此选项错误;
D.数据6、5、8、7、2的中位数是6,此选项正确;
故选:D.
11.(2020•枣庄)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( )
A.B.C.D.
【分析】列举出所有可能出现的结果,进而求出“两次都是白球”的概率.
【解析】用列表法表示所有可能出现的情况如下:
共有9种可能出现的结果,其中两次都是白球的有4种,
∴P(两次都是白球)=,
故选:A.
12.(2020•齐齐哈尔)一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷小正方体后,观察朝上一面的数字出现偶数的概率是( )
A.B.C.D.
【分析】用出现偶数朝上的结果数除以所有等可能的结果数即可得.
【解析】∵掷小正方体后共有6种等可能结果,其中朝上一面的数字出现偶数的有2、4、6这3种可能,
∴朝上一面的数字出现偶数的概率是,
故选:A.
13.(2020•盐城)一只不透明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为 .
【分析】直接利用概率公式进而计算得出答案.
【解析】∵一只不透明的袋中装有2个白球和3个黑球,
∴搅匀后从中任意摸出1个球摸到白球的概率为:.
故答案为:.
14.(2020•扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 cm2.
【分析】经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,可得点落入黑色部分的概率为0.6,根据边长为2cm的正方形的面积为4cm2,进而可以估计黑色部分的总面积.
【解析】∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,
∴点落入黑色部分的概率为0.6,
∵边长为2cm的正方形的面积为4cm2,
设黑色部分的面积为S,
则0.6,
解得S=2.4(cm2).
答:估计黑色部分的总面积约为2.4cm2.
故答案为:2.4.
15.(2020•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是 .
【分析】若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,再根据概率公式求解可得.
【解析】若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,
所以该小球停留在黑色区域的概率是,
故答案为:.
16.(2020•宜昌)技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为 .(结果要求保留两位小数)
【分析】根据抽检某一产品2020件,发现产品合格的频率已达到0.9911,所以估计合格件数的概率为0.99,问题得解.
【解析】∵抽检某一产品2020件,发现产品合格的频率已达到0.9911,
∴依此我们可以估计该产品合格的概率为0.99,
故答案为:0.99.
模拟预测
1.(2020湛江模拟)下列说法正确的是 ( )
A.“买一张电影票,座位号为偶数”是必然事件
B.若甲、乙两组数据的方差分别为=0.3、=0.1,则甲组数据比乙组数据稳定
C.一组数据2,4,5,5,3,6的众数是5
D.若某抽奖活动的中奖率为,则参加6次抽奖一定有1次能中奖
【解析】A.“买一张电影票,座位号为偶数”是随机事件,故A选项错误;
B.若甲、乙两组数据的方差分别为=0.3、=0.1,则乙组数据比甲组数据稳定,故B选项错误;
C.5出现的次数最多,故这组数据的众数为5,故C选项正确;
D.若某抽奖活动的中奖率为 ,则参加6次抽奖可能有1次中奖,故D选项错误.
2.(2020广州番禺模拟)有五张质地、大小、反面都相同的不透明卡片,正面分别写着数字1,2,3,4,5,现
把它们的正面向下,随机摆放在桌面上,任意抽取一张,则抽出的数字是奇数的概率是 ( )
A. B. C. D.
【解析】共有5个数字,奇数有3个,∴抽出的数字是奇数的概率是.
3.(2020广州天河一模)某班级开展一种游戏互动,规则是:在20个商标中,有5个商标牌的背面注明了一
定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖,每人有三次翻牌机会.小明同学前两次翻牌
均得若干奖金,如果翻过的牌不能再翻,那么他第三次翻牌获奖的概率是 ( )
A. B. C. D.
【解析】在余下的18个商标牌中,还有3个商标牌的背面注明了一定的奖金额,
∴他第三次翻牌获奖的概率是.
4.(2020佛山禅城模拟)在一个不透明的袋子里装有16个红球和若干个白球,这些球除颜色不同外无其
他差别.每次从袋子里摸出一个球记录下颜色后再放回,经过大量的重复试验,发现摸到白球的频率稳定
在0.6,则袋中白球的个数是 .
【解析】设袋子中白球的个数为x,
根据题意,得=0.6,
解得x=24.
经检验,x=24是分式方程的解且符合题意,
所以袋子中白球的个数是24.
射击次数
20
80
100
200
400
1000
“射中九环以上”的次数
18
68
82
168
327
823
“射中九环以上”的频率(结果保留两位小数)
0.90
0.85
0.82
0.84
0.82
0.82
1
2
1
2
3
2
3
4
考点02 根式-2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础: 这是一份考点02 根式-2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础,文件包含考点02根式2021年《三步冲刺中考•数学》广东专版之第1步小题夯基础原卷版doc、考点02根式2021年《三步冲刺中考•数学》广东专版之第1步小题夯基础解析版doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
考点01 实数-2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础: 这是一份考点01 实数-2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础,文件包含考点01实数2021年《三步冲刺中考•数学》广东专版之第1步小题夯基础原卷版doc、考点01实数2021年《三步冲刺中考•数学》广东专版之第1步小题夯基础解析版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
考点04 分式-2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础: 这是一份考点04 分式-2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础,文件包含考点04分式2021年《三步冲刺中考•数学》广东专版之第1步小题夯基础原卷版doc、考点04分式2021年《三步冲刺中考•数学》广东专版之第1步小题夯基础解析版doc等2份试卷配套教学资源,其中试卷共6页, 欢迎下载使用。