所属成套资源:人教版八年级数学下册全册精品教学PPT课件+同步教案
初中数学人教版八年级下册17.2 勾股定理的逆定理优秀课件ppt
展开
这是一份初中数学人教版八年级下册17.2 勾股定理的逆定理优秀课件ppt,共25页。PPT课件主要包含了学习目标,新课导入,新课讲解,课堂小结,当堂小练,拓展与延伸,布置作业,大禹治水,a2+b2c2,证一证等内容,欢迎下载使用。
1.掌握勾股定理逆定理的概念并理解互逆命题、定 理的概念、关系及勾股数.(重点)2.能证明勾股定理的逆定理,能利用勾股定理的逆 定理判断一个三角形是直角三角形.(难点)
同学们你们知道古埃及人用什么方法得到直角的吗?
打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
思考:从前面我们知道古埃及人认为一个三角形三边长分别为3,4,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?
相传,我国古代的大禹在治水时也用了类似的方法确定直角.
知识点1 勾股定理的逆定理
下面有三组数分别是一个三角形的三边长a, b, c: ①5,12,13; ②7,24,25; ③8,15,17.问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
下面有三组数分别是一个三角形的三边长a, b, c: ①5,12,13; ②7,24,25; ③8,15,17.问题2 这三组数在数量关系上有什么相同点?
① 5,12,13满足52+122=132,② 7,24,25满足72+242=252,③ 8,15,17满足82+152=172.
问题3 古埃及人用来画直角的三边满足这个等式吗?
∵32+42=52,∴满足.
我觉得这个猜想不准确,因为测量结果可能有误差.
我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.
问题3 据此你有什么猜想呢?
由上面几个例子,我们猜想:命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2. 求证:△ABC是直角三角形.
构造两直角边分别为a,b的Rt△A′B′C′
证明:作Rt△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,
∴△ABC≌ △A′B′C′(SSS),
∴∠C= ∠C′=90° , 即△ABC是直角三角形.
如果三角形的三边长a 、b 、c满足 a2+b2=c2那么这个三角形是直角三角形.
勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形 ,最长边所对应的角为直角.
例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?
(1) a=15 , b=8 ,c=17;
解:(1)∵152+82=289,172=289,∴152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且∠C是直角.
(2) a=13 ,b=14 ,c=15.
(2)∵132+142=365,152=225,∴132+142≠152,不符合勾股定理的逆定理,∴这个三角形不是直角三角形.
根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.
【变式题1】若△ABC的三边a,b,c满足 a:b: c=3:4:5,试判断△ABC的形状.
解:设a=3k,b=4k,c=5k(k>0),∵(3k)2+(4k)2=25k2,(5k)2=25k2,∴(3k)2+(4k)2=(5k)2,∴△ABC是直角三角形,且∠C是直角.
已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.
知识点2 勾股数
如果三角形的三边长a,b,c满足a2+b2=c2 那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.
3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.
一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.
下列各组数是勾股数的是 ( ) A.6,8,10 B.7,8,9 C.0.3,0.4,0.5 D.52,122,132
方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.
知识点3 互逆命题与互逆定理
命题1 如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.
命题2 如果三角形的三边长a 、b 、c满足a2+b2=c2,那么这个三角形是直角三角形.
前面我们学习了两个命题,分别为:
它们是题设和结论正好相反的两个命题.
问题1 两个命题的条件和结论分别是什么?
问题2 两个命题的条件和结论有何联系?
一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理.勾股定理与勾股定理的逆定理为互逆定理.
题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.
说出下列命题的逆命题,这些逆命题成立吗?(1)两条直线平行,内错角相等;(2)如果两个实数相等,那么它们的绝对值相等; (3)全等三角形的对应角相等; (4)在角的内部,到角的两边距离相等的点在角的平分线上.
内错角相等,两条直线平行.
如果两个实数的绝对值相等,那么它们相等.
对应角相等的三角形全等 .
在角平分线上的点到角的两边距离相等.
从三边数量关系判定一个三角形是否是直角形三角形.
如果三角形的三边长a 、b 、c满足a2+b2=c2,那么这个三角形是直角三角形.
最长边不一定是c, ∠C也不一定是直角.
1.下列各组数是勾股数的是 ( ) A.3,4,7 B.5,12,13 C.1.5,2,2.5 D.1,3,5
将直角三角形的三边长扩大同样的倍数,则得到的三角形 ( )A.是直角三角形 B.可能是锐角三角形C.可能是钝角三角形 D.不可能是直角三角形
3.在△ABC中,∠A, ∠B, ∠C的对边分别a,b,c.①若∠C- ∠B= ∠A,则△ABC是直角三角形;②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;③若(c+a)(c-a)=b2,则△ABC是直角三角形;④若∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.以上命题中的假命题个数是( )A.1个 B.2个 C.3个 D.4个
4.已知a、b、c是△ABC三边的长,且满足关系式 ,则△ABC的形状是 ________________.
5.(1)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_______cm;
(2)“等腰三角形两底角相等”的逆定理为_______________________________________.
有两个角相等的三角形是等腰三角形
相关课件
这是一份初中数学17.2 勾股定理的逆定理课堂教学ppt课件,共18页。PPT课件主要包含了创设情境提出问题,直角三角形,归纳猜想,探究新知,不一定,例题分析,巩固练习,是直角三角形,不成立,C地在B地的正北方向等内容,欢迎下载使用。
这是一份人教版八年级下册17.2 勾股定理的逆定理授课课件ppt,文件包含SectionBpptx、SectionA-1ppt、SectionA-2pptx、SelfCheckppt、SectionA1bmp3、SectionA2amp3、SectionA2bmp3、SectionA2dmp3、SectionB1cmp3、SectionB1dmp3、SectionB2bmp3、wordsandexpressionsUnit2mp3等12份课件配套教学资源,其中PPT共143页, 欢迎下载使用。
这是一份初中数学人教版八年级下册17.2 勾股定理的逆定理精品ppt课件,文件包含172《勾股定理的逆定理》课件pptx、172《勾股定理的逆定理》导学案doc、172《勾股定理的逆定理》教案doc等3份课件配套教学资源,其中PPT共40页, 欢迎下载使用。