考点01 三角形及其性质-2021年中考数学一轮复习基础夯实(安徽专用)
展开考点一 三角形及其性质
知识点整合
一、三角形的基础知识
1.三角形的概念
由三条线段首尾顺次相接组成的图形,叫做三角形.
2.三角形的三边关系
(1)三角形三边关系定理:三角形的两边之和大于第三边.
推论:三角形的两边之差小于第三边.
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.
3.三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°.
推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.
4.三角形中的重要线段
(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).
(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.
考向一 三角形的三边关系
在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.
典例引领
1.若长度分别为的三条线段能组成一个三角形,则a的值可以是( )
A.1 B.2 C.3 D.8
【答案】C
【分析】
根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.
【详解】
由三角形三边关系定理得:5﹣3<a<5+3,
即2<a<8,
由此可得,符合条件的只有选项C,
故选C.
【点睛】
本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.
2.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
A.12 B.15 C.12或15 D.18
【答案】B
【解析】
试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.
解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.
②若3是底,则腰是6,6.
3+6>6,符合条件.成立.
∴C=3+6+6=15.
故选B.
考点:等腰三角形的性质.
变式拓展
1.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为( )
A.13 B.15 C.18 D.13或18
2.已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是( )
A.11 B.12 C.11或12 D.15
考向二 三角形的内角和外角
在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.
典例引领
1.(2019·河南平舆县·八年级期中)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于
A. B. C. D.
【答案】C
【解析】
【分析】
根据三角形的内角和定理和三角形外角性质进行解答即可.
【详解】
如图:
,,
,,
∴
=
=,
故选C.
【点睛】
本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.
2.(2020·安徽九年级专题练习)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )
A.75° B.80° C.85° D.90°
【答案】A
【解析】
分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
详解:∵AD是BC边上的高,∠ABC=60°,
∴∠BAD=30°,
∵∠BAC=50°,AE平分∠BAC,
∴∠BAE=25°,
∴∠DAE=30°﹣25°=5°,
∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
∴∠EAD+∠ACD=5°+70°=75°,
故选A.
点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
3.(2015·山西九年级专题练习)如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )
A.118° B.119° C.120° D.121°
变式拓展
1.(2020·无锡市新区第一实验学校八年级月考)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.
2.(2020·全国八年级期中)如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=_____.
3.(2019·河北九年级其他模拟)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
考向三 三角形中的重要线段
三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.另外,要注意区分三角形的中线和中位线.中线:连接三角形一个顶点和它对边中点的线段;中位线:连接三角形两条边中点的线段.
典例引领
1.(2020·全国八年级期中)如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是( )
A.59° B.60° C.56° D.22°
【答案】A
【详解】
根据题意可得,在△ABC中,,则,
又AD为△ABC的角平分线,
又在△AEF中,BE为△ABC的高
∴
考点:1、三角形的内角内角之和的关系 2、对顶角相等的性质.
2.(2020·渠县第四中学八年级月考)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为( )
A.8 B.9 C. D.10
【答案】C
【分析】
本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.
【详解】
∵AB=8,BC=10,AC=6,
∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,
则由面积公式可知,S△ABC=ABAC=BCAD,
∴AD=.故选C.
【点睛】
本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.
3.(2020·滨州渤海中学八年级月考)如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于
A.16 B.14 C.12 D.10
4.(2018·四川自贡市·)如图,点D、E分别为△ABC的边AB、CB的中点,记△BDE的面积为S1,四边形ADEC的面积为S2,则S1∶S2=( )
A.1∶4 B.1∶3 C.1∶2 D.1∶1
5.(2020·河南伊川县·七年级期末)下列说法正确的是( )
①三角形的角平分线是射线;
②三角形的三条角平分线都在三角形内部,且交于同一点;
③三角形的三条高都在三角形内部;
④三角形的一条中线把该三角形分成面积相等的两部分.
A.①② B.②③ C.③④ D.②④
变式拓展
1.(2019·浙江乐清市·八年级月考)AD与BE是△ABC的角平分线,D,E分别在BC,AC上,若AD=AB,BE=BC,则∠C=( )
A.69° B. C. D.不能确定
2.(2018·全国八年级单元测试)下列叙述正确的是( )
①三角形的中线、角平分线都是射线
②三角形的三条高线交于一点
③三角形的中线就是经过一边中点的线段
④三角形的三条角平分线交于一点
⑤三角形的中线将三角形分成面积相等的两个小三角形.
A.④⑤ B.①②④ C.②④ D.④
3.(2020·曲阜师范大学附属实验学校八年级月考)给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有( )
A.1个 B.2个 C.3个 D.4个
4.(2019·山东夏津县·八年级期中)下列说法中错误的是( )
A.一个三角形中至少有一个角不小于60°
B.直角三角形只有一条高
C.三角形的中线不可能在三角形外部
D.三角形的中线把三角形分成面积相等的两部分
5.(2016·安徽九年级专题练习)如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=( )
A.1 B.2 C.3 D.4
6.(2020·惠州市江南学校八年级期中)如图,AE是△ABC的角平分线,AD⊥BC于点D,点F为BC的中点,若∠BAC=104°,∠C=40°,则有下列结论:①∠BAE=52°;②∠DAE=2°;③EF=ED;④S△ABF=S△ABC.其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
7.(2018·全国)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?( )
A.174 B.176 C.178 D.180
8.(2018·高邮市车逻镇初级中学中考模拟)如图,△ABC中,AB=AC,∠A=40º,点P是△ABC内一点,连结PB、PC,∠1=∠2,则∠BPC的度数是( )
A.110º B.130º C.140º D.120º
考点01 事件与概率-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 事件与概率-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01事件与概率解析版docx、考点01事件与概率原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
考点01 三角形及其性质-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 三角形及其性质-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01三角形及其性质解析版docx、考点01三角形及其性质原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
考点01 圆的基本性质-2021年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 圆的基本性质-2021年中考数学一轮复习基础夯实(安徽专用),文件包含考点01圆的基本性质原卷版docx、考点01圆的基本性质解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。