考点02 二次函数与方程不等式之间的关系-2021年中考数学一轮复习基础夯实(安徽专用)
展开考点二 二次函数与方程不等式之间的关系
知识点拓展
一、二次函数与一元二次方程的关系
1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).
2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.
3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;
(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;
(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.
考向一 二次函数与一元二次方程、不等式的综合
抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定.
1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.
2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.
3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).
典例引领
1.(2019·河南九年级专题练习)已知二次函数(为常数).
(1)求证:不论为何值,该函数的图像与轴总有公共点;
(2)当取什么值时,该函数的图像与轴的交点在轴的上方?
【答案】(1)证明见解析;(2)时,该函数的图像与轴的交点在轴的上方.
【解析】
分析:(1)首先求出与x轴交点的横坐标,,即可得出答案;
(2)求出二次函数与y轴的交点纵坐标.根据交点纵坐标大于0即可求出.
详解:
(1)证明:当时,.
解得,.
当,即时,方程有两个相等的实数根;当,即时,方程有两个不相等的实数根.
所以,不论为何值,该函数的图像与轴总有公共点.
(2)解:当时,,即该函数的图像与轴交点的纵坐标是.
当,即时,该函数的图像与轴的交点在轴的上方.
点睛:本题考查了抛物线与x轴的交点坐标,熟练掌握抛物线与x轴的交点的证明方法,求出抛物线与y轴交点的纵坐标是解决问题(2)的关键.
2.(2020·全国九年级课时练习)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)
(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标;
(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.
【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.
【解析】
【分析】
(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;
(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;
(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.
【详解】
解:(1)设抛物线顶点式y=a(x+1)2+4,
将B(2,﹣5)代入得:a=﹣1,
∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;
(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),
令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,
即抛物线与x轴的交点为:(﹣3,0),(1,0);
(3)设抛物线与x轴的交点为M、N(M在N的左侧),
由(2)知:M(﹣3,0),N(1,0),
当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,
故A'(2,4),B'(5,﹣5),
∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.
【点睛】
本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.
3.(2020·多伦县第四中学九年级期中)已知二次函数(m是常数)
(1)求证:不论m为何值,该函数的图像与x轴没有公共点;
(2)把该函数的图像沿x轴向下平移多少个单位长度后,得到的函数的图像与x轴只有一个公共点?
4.(2020·安徽九年级专题练习)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.
(1)求k的值:
(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.
5.(2017·山西九年级专题练习)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.
6.(2014·山西)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.
7.(2020·浙江余杭区·九年级月考)如图,直线和抛物线都经过点,.
求m的值和抛物线的解析式;
求不等式的解集直接写出答案
8.(2020·江西定南县·九年级期末)如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.
(1)求直线BC的函数关系式;
(2)当y1>y2时,请直接写出x的取值范围.
变式拓展
1.(2020·昆山市城北中学九年级月考)已知二次函数.
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式.
2.(2020·河南九年级期中)已知抛物线y=ax2+bx+3的对称轴是直线x=1.
(1)求证:2a+b=0;
(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.
3.(2020·湖南湘阴县·知源学校九年级其他模拟)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;
(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.
4.(2019·黑龙江克东县·)某童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装每天可售出20件为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利经调查发现:如果每件童装降价1元,那么每天就可多售出2件.
如果童装店想每天销售这种童装盈利1050元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?
每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?
5.(2019·全国九年级单元测试)如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴正半轴、y轴的负半轴上,二次函数y=(x−h)2+k的图象经过B、C两点.
(1)求该二次函数的顶点坐标;
(2)结合函数的图象探索:当y>0时x的取值范围;
(3)设m<,且A(m,y1),B(m+1,y2)两点都在该函数图象上,试比较y1、y2的大小,并简要说明理由.
6.(2020·黑龙江甘南县·九年级期末)某超市欲购进一种今年新上市的产品,购进价为20元件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量件与每件的销售价元件之间有如下关系:
请写出该超市销售这种产品每天的销售利润元与x之间的函数关系式,并求出超市能获取的最大利润是多少元.
若超市想获取1500元的利润求每件的销售价.
若超市想获取的利润不低于1500元,请求出每件的销售价X的范围?
7.(2018·湖北九年级期中)已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).
(1)求抛物线的解析式;
(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;
(3)当y≤时,直接写出x的取值范围是 .
8.(2019·山东东营市·九年级月考)如图,二次函数y=x2﹣4x+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,直接写出满足kx+b≥x2﹣4x+m的x的取值范围.
(3)在抛物线的对称轴上是否存在一点P使得PA+PC最小,求P点坐标及最小值.
考点02 二次函数与方程不等式之间的关系-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 二次函数与方程不等式之间的关系-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点02二次函数与方程不等式之间的关系解析版docx、考点02二次函数与方程不等式之间的关系原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
考点02 二次根式-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 二次根式-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点02二次根式解析版docx、考点02二次根式原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
考点02 与圆有关的位置关系-2021年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 与圆有关的位置关系-2021年中考数学一轮复习基础夯实(安徽专用),文件包含考点02与圆有关的位置关系原卷版docx、考点02与圆有关的位置关系解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。