考点02 视图与投影-2021年中考数学一轮复习基础夯实(安徽专用)
展开考点二 视图与投影
一、投影
1.投影
在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.
2.平行投影、中心投影、正投影
(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.
【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.
(2)平行投影:投射线相互平行的投影称为平行投影.
【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.
(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.
二、视图
1.视图
由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.
2.三视图
(1)主视图:从正面看得到的视图叫做主视图.
(2)左视图:从左面看得到的视图叫做左视图.
(3)俯视图:从上面看得到的视图叫做俯视图.
【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.
3.三视图的画法
(1)画三视图要注意三要素:
主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.
简记为“主俯长对正,主左高平齐,左俯宽相等”.
(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.
三、几何体的展开与折叠
1.常见几何体的展开图
几何体 | 立体图形 | 表面展开图 | 侧面展开图 |
圆柱 |
| ||
圆锥 | |||
三棱柱 |
2.正方体的展开图
正方体有11种展开图,分为四类:
第一类,中间四连方,两侧各有一个,共6种,如下图:
第二类,中间三连方,两侧各有一、二个,共3种,如下图:
第三类,中间二连方,两侧各有二个,只有1种,如图10;
第四类,两排各有三个,也只有1种,如图11.
考向一 三视图
在判断几何体的三视图时,注意以下两个方面:
(1)分清主视图、左视图与俯视图的区别;
(2)看得见的线画实线,看不见的线画虚线.
典例引领
1.(2020·山西省运城市运康中学校九年级月考)如图所示的几何体,它的左视图是( )
A. B. C. D.
【答案】D
【解析】
分析:根据从左边看得到的图形是左视图,可得答案.
详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
故选D.
点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
2.(2016·陕西九年级专题练习)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B. C. D.
【答案】C
【解析】
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
变式拓展
1.(2019·山西九年级专题练习)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图 B.左视图 C.俯视图 D.主视图和左视图
【答案】C
【解析】
【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.
【详解】观察几何体,可得三视图如图所示:
可知俯视图是中心对称图形,
故选C.
【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.
2.(2019·四川邛崃市·七年级期中)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )
A. B. C. D.
【答案】B
【解析】
试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.
考点:简单组合体的三视图.
考向二 几何体的还原与计算
解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.
典例引领
1.(2019·山西九年级专题练习)一个几何体的三视图如图所示,则该几何体的表面积是( )
A.24+2π B.16+4π C.16+8π D.16+12π
【答案】D
【解析】
【分析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
【详解】
该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,
故选D.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.
2.(2020·河南叶县·九年级期中)图2是图1中长方体的三视图,若用表示面积,则( )
A. B. C. D.
【答案】A
【分析】
由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.
【详解】
∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.
故选A.
【点睛】
本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.
变式拓展
1.(2019·湖南邵阳市·九年级三模)如图是某圆锥的主视图和左视图,该圆锥的侧面积是( )
A.25π B.24π C.20π D.15π
【答案】C
【解析】
分析:求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.
详解:由题可得,圆锥的底面直径为8,高为3,
∴圆锥的底面周长为8π,
圆锥的母线长为=5,
∴圆锥的侧面积=×8π×5=20π,
故选C.
点睛:本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
2.(2019·辽宁铁岭市·九年级其他模拟)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )
A.9π B.10π C.11π D.12π
【答案】B
【解析】
【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.
【详解】由题意可得此几何体是圆锥,
底面圆的半径为:2,母线长为:5,
故这个几何体的侧面积为:π×2×5=10π,
故选B.
【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.
3.(2020·陕西九年级专题练习)一个几何体的三视图如图所示,则这个几何体的表面积是( )
A. B. C. D.
【答案】D
【解析】
【分析】
由题意推知几何体为长方体,长、宽、高分别为、、,根据长方体的表面积公式即可求其表面积.
【详解】
由题意推知几何体是长方体,长、宽、高分别、、,
所以其面积为:,
故选D.
【点睛】
本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.
考向三 投影
1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.
2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.
3.物体的投影分为中心投影和平行投影.
典例引领
1.(2014·山西九年级专题练习)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )
A.米 B.12米 C.米 D.10米
【答案】A
【解析】
解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质.
【分析】延长AC交BF延长线于E点,则∠CFE=30°.
作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,
∴CE=2,EF=4cos30°=2,
在Rt△CED中,CE=2,
∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4.
∴BD=BF+EF+ED=12+2.
∵△DCE∽△DAB,且CE:DE=1:2,
∴在Rt△ABD中,AB=BD=.故选A.
变式拓展
1.(2019·建湖县建阳中学)在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )
A. B.
C. D.
【答案】A
【解析】
解:将矩形木框立起与地面垂直放置时,形成B选项的影子;
将矩形木框与地面平行放置时,形成C选项影子;
将木框倾斜放置形成D选项影子;
根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.
故选A.
2.(2020·苏州新草桥中学八年级月考)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯之间的距离是( )
A.24 m B.25 m C.28 m D.30 m
【答案】D
【解析】
由题意可得:EP∥BD,所以△AEP∽△ADB,所以,因为EP=1.5,BD=9,所以,解得:AP=5,因为AP=BQ,PQ=20,所以AB=AP+BQ+PQ=5+5+20=30,故选D.
点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
3.(2019·全国九年级单元测试)如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14,则排球的直径是( )
A.7 cm B.14 cm C.21 cm D.21cm
【答案】C
【解析】
【分析】
由于太阳光线为平行光线,根据切线的性质得到AB为排球的直径,CD=AB,cm,在Rt△CDE中,利用正弦的定义可计算出CD的长,从而得到排球的直径.
【详解】
如图,点A与点B为太阳光线与球的切点,
则AB为排球的直径,CD=AB,cm,
在Rt△CDE中,sinE=
所以
即排球的直径为21cm.
故选C.
【点睛】
考查平行投影以及解直角三角形,画出示意图,构造直角三角形是解题的关键.
4.(2019·江苏苏州工业园区·八年级期末)如图,有一高度为8m的灯塔AB,在灯光下,身高为1.6m的小亮从距离灯塔底端4.8m的点C处,沿BC方向前进3.2m到达点D处,那么他的影长( )
A.变长了0.8m B.变长了1.2m C.变短了0.8m D.变短了1.2m
【答案】A
【解析】
【分析】
根据由CH∥AB∥DG可得△HCE∽△ABE、△GDF∽△ABF,所以,将数值代入求解可得CE、DF的值,可得答案。
【详解】
解:如图
由CH∥AB∥DG可得△HCE∽△ABE、△GDF∽△ABF,
∴,即
解得:CE=1.2,DF=2
∴DF-CE=2-1.2=0.8
故选:A
【点睛】
本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.
考点02 矩形、菱形、正方形-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 矩形、菱形、正方形-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点02矩形菱形正方形解析版docx、考点02矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
考点02 二次根式-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 二次根式-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点02二次根式解析版docx、考点02二次根式原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
考点02 与圆有关的位置关系-2021年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 与圆有关的位置关系-2021年中考数学一轮复习基础夯实(安徽专用),文件包含考点02与圆有关的位置关系原卷版docx、考点02与圆有关的位置关系解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。