![考点04 相似三角形-2021年中考数学一轮复习基础夯实(安徽专用) 试卷01](http://img-preview.51jiaoxi.com/2/3/5906479/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点04 相似三角形-2021年中考数学一轮复习基础夯实(安徽专用) 试卷02](http://img-preview.51jiaoxi.com/2/3/5906479/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点04 相似三角形-2021年中考数学一轮复习基础夯实(安徽专用) 试卷03](http://img-preview.51jiaoxi.com/2/3/5906479/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点04 相似三角形-2021年中考数学一轮复习基础夯实(安徽专用) 试卷01](http://img-preview.51jiaoxi.com/2/3/5906479/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点04 相似三角形-2021年中考数学一轮复习基础夯实(安徽专用) 试卷02](http://img-preview.51jiaoxi.com/2/3/5906479/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点04 相似三角形-2021年中考数学一轮复习基础夯实(安徽专用) 试卷03](http://img-preview.51jiaoxi.com/2/3/5906479/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
考点04 相似三角形-2021年中考数学一轮复习基础夯实(安徽专用)
展开考点四 相似三角形
知识点整合
一、比例的相关概念及性质
1.线段的比
两条线段的比是两条线段的长度之比.
2.比例中项
如果=,即b2=ac,我们就把b叫做a,c的比例中项.
3.比例的性质
性质 | 内容 |
性质1 | =⇔ad=bc(a,b,c,d≠0). |
性质2 | 如果=,那么. |
性质3 | 如果==…=(b+d+…+n≠0),则=(不唯一). |
4.黄金分割
如果点C把线段AB分成两条线段,使,那么点C叫做线段AC的黄金分割点,AC是BC与AB的比例中项,AC与AB的比叫做黄金比.
二、相似三角形的判定及性质
1.定义
对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.
2.性质
(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.
3.判定
(1)有两角对应相等,两三角形相似;学_科网
(2)两边对应成比例且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.
【方法技巧】判定三角形相似的几条思路:
(1)条件中若有平行线,可采用相似三角形的判定(1);
(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];
(3)条件中若有两边对应成比例,可找夹角相等;
(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;
(5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.
三、相似多边形
1.定义
对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.
2.性质
(1)相似多边形的对应边成比例;
(2)相似多边形的对应角相等;
(3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.
四、位似图形
1.定义
如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.
2.性质
(1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k,那么位似图形对应点的坐标的比等于k或–k;
(2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.
3.找位似中心的方法
将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.
4.画位似图形的步骤
(1)确定位似中心;
(2)确定原图形的关键点;
(3)确定位似比,即要将图形放大或缩小的倍数;
(4)作出原图形中各关键点的对应点;
(5)按原图形的连接顺序连接所作的各个对应点.
考向一 比例线段及其性质
1.比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.
2.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a∶b=c∶d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
3.判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.
典例引领
1.(2020·枣庄市薛城舜耕中学九年级月考)如果成立,那么下列各式一定成立的是( )
A. B. C. D.
【答案】D
【解析】
已知成立,根据比例的性质可得选项A、B、C都不成立;选项D ,由=可得,即可得,选项D正确,故选D.
点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.
2.(2018·全国专题练习)已知,那么下列等式中,不成立的是( )
A. B. C. D.4x=3y
【答案】B
【解析】
【分析】根据比例的基本性质逐项进行求解即可.
【详解】A,∵,∴,此选项正确,不合题意;B,∵,∴=–,此选项错误,符合题意;C,∵,∴,此选项正确,不合题意;D,∵,∴4x=3y,此选项正确,不合题意,
故选B.
【点睛】本题考查了比例的性质,熟练掌握和应用比例的性质是解题的关键.
变式拓展
1.(2020·全国九年级课时练习)若,且,则的值是( )
A.4 B.2 C.20 D.14
2.(2018·陕西九年级专题练习)已知,且,则的值为__________.
3.(2020·广东南海区·九年级月考)已知,则= .
4.(2018·四川青羊区·石室中学九年级月考)若,则=_____
考向二 相似三角形
1.相似三角形的性质:①相似三角形的对应角相等,对应边的比相等;②相似三角形的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;③相似三角形的面积的比等于相似比的平方.由三角形的面积公式和相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.
2.相似三角形的判定:①平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;②三边法:三组对应边的比相等的两个三角形相似;③两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;④两角法:有两组角对应相等的两个三角形相似.
典例引领
1.(2020·北京市第四十三中学)如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
【答案】(1)详见解析;(2)BE=.
【分析】
(1)首先得出∠A=∠B=90°,再根据已知得到∠ADE=∠CEB,利用两角对应相等的两个三角形相似即可得证;
(2)利用相似三角形的性质得出BE的长,进而得出答案即可.
【详解】
(1)∵AD∥BC,AB⊥BC,
∴AB⊥AD,∠A=∠B=90°,
∴∠ADE+∠AED=90°,
∵∠DEC=90°,
∴∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
∴△ADE∽△BEC;
(2)∵△ADE∽△BEC,
∴,
∵AD=1,BC=3,AE=2,
∴,
∴BE=,
∴AB=AE+BE=.
【点睛】
本题考查了相似三角形的判定与性质,熟练掌握相关知识是解题的关键.
2.(2019·云南昆明市·九年级学业考试)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
【答案】(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
【解析】
【分析】
(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
(2)连接CG,只需证∽即可得;
(3)证∽得,设,知,由得、、,由可得a的值.
【详解】
(1)①∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形;
②由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为;
(2)连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=、=,
∴=,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG=BE;
(3)∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC=a,
则由得,
∴AH=a,
则DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案为3.
【点睛】
本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.
3.(2019·山西九年级专题练习)如图,在中,过点C作,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF
求证:四边形AFCD是平行四边形.
若,,,求AB的长.
4.(2017·山西九年级专题练习)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
变式拓展
1.(2014·山西九年级专题练习)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
2.(2019·湖州市第五中学九年级期中)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
3.(2020·山东禹城市·九年级学业考试)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB.(小平面镜的大小忽略不计)
4.(2020·山东禹城市·九年级学业考试)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;
(3)当△ADE是等腰三角形时,求AE的长.
5.(2020·浙江海宁市·九年级学业考试)如图,△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD折叠,使点C落在点F处,线段DF与AB相交于点E.
(1)求∠BDE的度数.
(2)求证:△DEB∽△ADB.
(3)若BC=4,求BE的长.
6.(2019·山东牡丹区·九年级学业考试)(1)(问题发现)
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)(拓展研究)
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)(问题发现)
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
7.(2020·河北路南区·九年级学业考试)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,BF交AC于G,连接CF.
(1)求证:△AEF≌△DEB;
(2)若∠BAC=90°,①试判断四边形ADCF的形状,并证明你的结论;
②若AB=8,BD=5,直接写出线段AG的长 .
8.(2020·江苏灌云县·九年级学业考试)如图,在中,,,、为线段上两动点,且,过点、分别作、的垂线相交于点,垂足分别为、.
(1)求证:;
(2)试探究、、之间有何数量关系?说明理由.
考点01 线段与角-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 线段与角-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01线段与角解析版docx、考点01线段与角原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
考点01 事件与概率-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 事件与概率-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01事件与概率解析版docx、考点01事件与概率原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
考点01 尺规作图-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 尺规作图-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01尺规作图解析版docx、考点01尺规作图原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。