所属成套资源:高三数学第一轮复习教案
- 高三数学第一轮复习 集合及其运算教案 文 教案 0 次下载
- 高三数学第一轮复习 函数模型及其综合应用教案 文 教案 0 次下载
- 高三数学第一轮复习 幂函数教案 文 教案 0 次下载
- 高三数学第一轮复习 命题及其关系 充分条件 必要条件教案 文 教案 0 次下载
- 高三数学第一轮复习 指数与指数函数教案 文 教案 0 次下载
高三数学第一轮复习 简单的逻辑联结词、全称量词与存在量词教案 文
展开
这是一份高三数学第一轮复习 简单的逻辑联结词、全称量词与存在量词教案 文,共6页。教案主要包含了知识梳理,题型探究,方法提升,反思感悟,课时作业等内容,欢迎下载使用。
简单的逻辑联结词:
常用的简单的逻辑联结词有 ,用符号 来表法;
其含义是:“且”是若干个简单命题都成立;“或”是若干个简单命题中至少有一个成立;“非”是对一个简单命题的否定。(只否定结论)
由“或”,“且”,“非”联结的命题及真假
“p且q”即 ,含义是p,q两个命题 成立;
“p或q”即 ,含义是p,q两个命题 成立;
“非p”即 ,含义是对p命题的 。
由“或”,“且”,“非”联结的命题的真值表
量词
(1)、短语“对所有的”或“对任意一个”,在陈述句中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示,含有全称量词的命题叫做全称命题。
(2)、短语“存在一个”或“至少有一个”,在陈述句中表示事物的个体或部分,逻辑学中通常叫做存在量词,并用符号“”来表示,含有存在量词的命题叫做特称命题,或叫存在性命题。
(3)、全称命题p:x,p(x):它的否定 : , ();
特称命题q:,q():它的否定 :x, (X)
全称命题的否定是特称命题;特称命题的否定是全称命题。
二、题型探究
【探究一】:由“或”,“且”,“非”联结的命题及真假
例1:分别写出下列各组命题的构成的“p或q”“p且q”“非p”形式的命题,并判断它们的真假
(1)p:1不是质数 q:1不是合数
(2)p:四条边都相等的四边形是正方形 p:四个角相等的四边形是正方形
探究二:由“或”,“且”,“非”联结的命题的真假为背景,求解参数
例2:已知命题p:关于方程实根;命题q:函数y=在[3,+是上增函数,若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围。
探究三:含有量词的命题的否定
例3:
(1)、[2014·新课标全国卷Ⅰ] 不等式组eq \b\lc\{(\a\vs4\al\c1(x+y≥1,,x-2y≤4))的解集记为D,有下面四个命题:
p1:∀(x,y)∈D,x+2y≥-2,p2:∃(x,y)∈D,x+2y≥2,
p3:∀(x,y)∈D,x+2y≤3,p4:∃(x,y)∈D,x+2y≤-1.
其中的真命题是(B )
A.p2,p3 B.p1,p2 C.p1,p4 D.p1,p3
(2)、命题“R,”的否定是 (A)
A. x B.x
C.R, D.不存在
(3)、全称命题“所有被5整除的整数都是奇数”的否定是( C )
A.所有被5整除的整数都不是奇数; B.所有奇数都不能被5整除
C.存在一个被5整除的整数不是奇数; D.存在一个奇数,不能被5整除
三、方法提升
1、复合命题是简单命题与逻辑联结词构成,简单命题的真假决定了复合命题的真假,复合命题的真假用真值表来判断,对于“p或q”都假或为假,对于p且q都真且为真。
2、“非”命题最常见的几个正面词语的否定:
3、全称命题的否定是特称命题,特称命题的否定是全称命题。
四、反思感悟
五、课时作业:
一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)
1. (2013年高考(湖南卷))设函数若a,b,c是的三条边长,由下列结论正确的是 。(写出所有正确结论的序号)
①
②
③若
【答案】(全对)
2.命题p:是y=|sinx|的一条对称轴,q:是y=|sinx|的最小正周期,下列命题:①p或q,②p且q,③非p,④非q,其中真命题的个数为(C )
A.0 B.1 C.2 D.3
解析:依题意知p真q假,所以①、④为真命题,有2个.故选C.
答案:C
3. (2013年高考福建卷) 设函数的定义域为R,是的极大值点,以下结论一定正确的是( )
A. B.是的极小值点
C.是的极小值点 D.是的极小值点
【答案】D
【解析】
A.,错误.是的极大值点,并不是最大值点.
B.是的极小值点.错误.相当于关于y轴的对称图像,故应是的极大值点
C.是的极小值点.错误.相当于关于x轴的对称图像,故应是的极小值点.跟没有关系.
D.是的极小值点.正确.相当于先关于y轴的对象,再关于x轴的对称图像.故D正确
4.(2011·新课标全国)已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数.则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是( C )
A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4
解析:p1是真命题,则¬p1为假命题;p2是假命题,则¬p2为真命题;
∴q1:p1∨p2是真命题,q2:p1∧p2是假命题,
∴q3:(¬p1)∨p2为假命题,q4:p1∧(¬p2)为真命题.
∴真命题是q1,q4,故选C.
5.(2011·辽宁)已知a>0,则x0满足关于x的方程ax=b的充要条件是( C )
A.∃x∈R,ax2-bx≥ax20-bx0 B.∃x∈R, ax2-bx≤ax20-bx0
C.∀x∈R, ax2-bx≥ax20-bx0 D.∀x∈R, ax2-bx≤ax20-bx0
解析:设函数f(x)= ax2-bx,∴f′(x)=ax-b,由已知可得f′(x0)=ax0-b=0,又因为a>0,所以可知x0是函数f(x)的极小值点,也是最小值点.由最小值定义可知选项C正确.
6.已知p: 0,若¬p是¬q的必要不充分条件,则实数a的取值范围是( )
A.(-∞,1) B.[1,3] C.[1,+∞) D.[3,+∞)
解析: -1
相关教案
这是一份高中数学人教版新课标A选修2-11.3简单的逻辑联结词教案及反思,共3页。教案主要包含了复习回顾,讲授新课等内容,欢迎下载使用。
这是一份人教版新课标A选修2-11.3简单的逻辑联结词教学设计,共2页。教案主要包含了复习准备,讲授新课,巩固练习等内容,欢迎下载使用。
这是一份一轮复习专题03 简单的逻辑联结词、全称量词与存在量词(原卷版)教案,共4页。教案主要包含了知识梳理,题型训练等内容,欢迎下载使用。