2021高考数学(文)大一轮复习习题 第七章 立体几何 课时跟踪检测 (四十二) 直线、平面垂直的判定及其性质 word版含答案
展开课时跟踪检测 (四十二) 直线、平面垂直的判定及其性质
一抓基础,多练小题做到眼疾手快
1.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选A 依题意,由l⊥β,l⊂α可以推出α⊥β;反过来,由α⊥β,l⊂α不能推出l⊥β.因此“l⊥β”是“α⊥β”成立的充分不必要条件,故选A.
2.已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β,其中正确的命题的个数是( )
A.1 B.2
C.3 D.4
解析:选B ①中,α∥β,且m⊥α,则m⊥β,因为l⊂β,所以m⊥l,所以①正确;②中,α⊥β,且m⊥α,则m∥β或m⊂β,又l⊂β,则m与l可能平行,可能异面,可能相交,所以②不正确;③中,m⊥l,且m⊥α,l⊂β,则α与β可能平行,可能相交,所以③不正确;④中,m∥l,且m⊥α,则l⊥α,因为l⊂β,所以α⊥β,所以④正确,故选B.
3.已知在空间四边形ABCD中,AD⊥BC,AD⊥BD,且△BCD是锐角三角形,则必有( )
A.平面ABD⊥平面ADC B.平面ABD⊥平面ABC
C.平面ADC⊥平面BDC D.平面ABC⊥平面BDC
解析:选C ∵AD⊥BC,AD⊥BD,BC∩BD=B,∴AD⊥平面BDC,又AD⊂平面ADC,∴平面ADC⊥平面BDC.
4.一平面垂直于另一平面的一条平行线,则这两个平面的位置关系是________.
解析:由线面平行的性质定理知,该面必有一直线与已知直线平行.再根据“两平行线中一条垂直于一平面,另一条也垂直于该平面”得出两个平面垂直相交.
答案:垂直相交
5.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:
①若a∥α且b∥α,则a∥b;②若a⊥α且a⊥β,则α∥β;
③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;
④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.
上面命题中,所有真命题的序号是________.
解析:①中a与b可能相交或异面,故不正确.
②垂直于同一直线的两平面平行,正确.
③中存在γ,使得γ与α,β都垂直.
④中只需直线l⊥α且l⊄β就可以.
答案:②③④
二保高考,全练题型做到高考达标
1.(2017·青岛质检)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是( )
A.a⊥α,b∥β,α⊥β B.a⊥α,b⊥β,α∥β
C.a⊂α,b⊥β,α∥β D.a⊂α,b∥β,α⊥β
解析:选C 对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.
2.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P ABC中直角三角形的个数为( )
A.4 B.3
C.2 D.1
解析:选A 由PA⊥平面ABC可得△PAC,△PAB是直角三角形,且PA⊥BC.又∠ABC=90°,所以△ABC是直角三角形,且BC⊥平面PAB,所以BC⊥PB,即△PBC为直角三角形,故四面体P ABC中共有4个直角三角形.
3.(2017·南昌模拟)设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β ”的平面α,β( )
A.不存在 B.有且只有一对
C.有且只有两对 D.有无数对
解析:选D 过直线a的平面α有无数个,当平面α与直线b平行时,两直线的公垂线与b确定的平面β⊥α,当平面α与b相交时,过交点作平面α的垂线与b确定的平面β⊥α.故选D.
4.(2017·吉林实验中学测试)设a,b,c是空间的三条直线,α,β是空间的两个平面,则下列命题中,逆命题不成立的是( )
A.当c⊥α时,若c⊥β,则α∥β
B.当b⊂α时,若b⊥β,则α⊥β
C.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥b
D.当b⊂α,且c⊄α时,若c∥α,则b∥c
解析:选B A的逆命题为:当c⊥α时,若α∥β,则c⊥β.由线面垂直的性质知c⊥β,故A正确;B的逆命题为:当b⊂α时,若α⊥β,则b⊥β,显然错误,故B错误;C的逆命题为:当b⊂α,且c是a在α内的射影时,若a⊥b,则b⊥c.由三垂线逆定理知b⊥c,故C正确;D的逆命题为:当b⊂α,且c⊄α时,若b∥c,则c∥α.由线面平行判定定理可得c∥α,故D正确.
5.(2017·贵阳市监测考试)如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )
A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PC
D.AP⊥平面PBC
解析:选B A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A能证明AP⊥BC;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C能证明AP⊥BC;由A知D能证明AP⊥BC;B中条件不能判断出AP⊥BC,故选B.
6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有____________;与AP垂直的直线有________.
解析:∵PC⊥平面ABC,
∴PC垂直于直线AB,BC,AC.
∵AB⊥AC,AB⊥PC,AC∩PC=C,
∴AB⊥平面PAC,
又∵AP⊂平面PAC,
∴AB⊥AP,与AP垂直的直线是AB.
答案:AB,BC,AC AB
7.如图所示,在四棱锥P ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
解析:连接AC,BD,则AC⊥BD,
∵PA⊥底面ABCD,∴PA⊥BD.
又PA∩AC=A,∴BD⊥平面PAC,
∴BD⊥PC.
∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.
而PC⊂平面PCD,
∴平面MBD⊥平面PCD.
答案:DM⊥PC(或BM⊥PC)
8.如图,直三棱柱ABC A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.
解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.
由已知可以得A1B1=,
设Rt△AA1B1斜边AB1上的高为h,则DE=h.
又2×=h×,
所以h=,DE=.
在Rt△DB1E中,B1E= =.
由面积相等得× =x,得x=.
即线段B1F的长为.
答案:
9.(2016·贵州省适应性考试)已知长方形ABCD中,AB=3,AD=4.现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.
(1)试问:在折叠的过程中,直线AB与CD能否垂直?若能,求出相应a的值;若不能,请说明理由.
(2)求四面体ABCD体积的最大值.
解:(1)直线AB与CD能垂直.
因为AB⊥AD,
若AB⊥CD,因为AD∩CD=D,
所以AB⊥平面ACD,
又因为AC⊂平面ACD,
从而AB⊥AC.
此时,a===,
即当a=时,有AB⊥CD.
(2)由于△BCD面积为定值,所以当点A到平面BCD的距离最大,即当平面ABD⊥平面BCD时,该四面体的体积最大,
此时,过点A在平面ABD内作AH⊥BD,垂足为H,
则有AH⊥平面BCD,AH就是该四面体的高.
在△ABD中,AH==,
S△BCD=×3×4=6,
此时VABCD=S△BCD·AH=,即为该四面体体积的最大值.
10.(2017·河南省八市重点高中质量检测)如图,过底面是矩形的四棱锥FABCD的顶点F作EF∥AB,使AB=2EF,且平面ABFE⊥平面ABCD,若点G在CD上且满足DG=GC.求证:
(1)FG∥平面AED;
(2)平面DAF⊥平面BAF.
证明:(1)因为DG=GC,AB=CD=2EF,AB∥EF∥CD,
所以EF∥DG,EF=DG.
所以四边形DEFG为平行四边形,
所以FG∥ED.
又因为FG⊄平面AED,ED⊂平面AED,
所以FG∥平面AED.
(2)因为平面ABFE⊥平面ABCD,平面ABFE∩平面ABCD=AB,AD⊥AB,AD⊂平面ABCD,
所以AD⊥平面BAF,
又AD⊂平面DAF,
所以平面DAF⊥平面BAF.
三上台阶,自主选做志在冲刺名校
1.(2017·兰州市实战考试)α,β是两平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF.现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.
其中能成为增加条件的序号是________.
解析:由题意得,AB∥CD,∴A,B,C,D四点共面,①:∵AC⊥β,EF⊂β,∴AC⊥EF,又∵AB⊥α,EF⊂α,∴AB⊥EF,∵AB∩AC=A,∴EF⊥平面ABCD,又∵BD⊂平面ABCD,∴BD⊥EF,故①正确;②不能得到BD⊥EF,故②错误;③:由AC与CD在β内的射影在同一条直线上可知平面ABCD⊥β,又AB⊥α,AB⊂平面ABCD,∴平面ABCD⊥α.∵平面ABCD⊥α,平面ABCD⊥β,α∩β=EF,∴EF⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥EF,故③正确;④:由①知,若BD⊥EF,则EF⊥平面ABCD,则EF⊥AC,故④错误,故填①③.
答案:①③
2.如图,在四棱锥S ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且点P为AD的中点,点Q为SB的中点.
(1)求证:CD⊥平面SAD.
(2)求证:PQ∥平面SCD.
(3)若SA=SD,点M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?若存在,请说明其位置,并加以证明;若不存在,请说明理由.
解:(1)证明:因为四边形ABCD为正方形,所以CD⊥AD.
又因为平面SAD⊥平面ABCD,且平面SAD∩平面ABCD=AD,所以CD⊥平面SAD.
(2)证明:如图,取SC的中点R,连接QR,DR.
由题意知:PD∥BC且PD=BC.
在△SBC中,点Q为SB的中点,点R为SC的中点,
所以QR∥ BC且QR=BC,
所以PD∥QR,且PD=QR,
所以四边形PDRQ为平行四边形,所以PQ∥DR.
又因为PQ⊄平面SCD,DR⊂平面SCD,
所以PQ∥平面SCD.
(3)存在点N为SC的中点,使得平面DMN⊥平面ABCD.
证明如下:如图,连接PC,DM交于点O,
连接DN,PM,SP,NM,ND,NO,
因为PD∥CM,且PD=CM,
所以四边形PMCD为平行四边形,
所以PO=CO.
又因为点N为SC的中点,
所以NO∥SP.
易知SP⊥AD,
因为平面SAD⊥平面ABCD,
平面SAD∩平面ABCD=AD,并且SP⊥AD,
所以SP⊥平面ABCD,所以NO⊥平面ABCD.
又因为NO⊂平面DMN,
所以平面DMN⊥平面ABCD.
高中数学高考2018高考数学(文)大一轮复习习题 第七章 立体几何 课时跟踪检测 (四十二) 直线、平面垂直的判定及其性质 Word版含答案: 这是一份高中数学高考2018高考数学(文)大一轮复习习题 第七章 立体几何 课时跟踪检测 (四十二) 直线、平面垂直的判定及其性质 Word版含答案,共7页。
高中数学高考2018高考数学(文)大一轮复习习题 第七章 立体几何 课时跟踪检测 (四十) 空间点、线、面之间的位置关系 Word版含答案: 这是一份高中数学高考2018高考数学(文)大一轮复习习题 第七章 立体几何 课时跟踪检测 (四十) 空间点、线、面之间的位置关系 Word版含答案,共7页。试卷主要包含了故选C等内容,欢迎下载使用。
2021高考数学(文)大一轮复习习题 第七章 立体几何 word版含答案: 这是一份2021高考数学(文)大一轮复习习题 第七章 立体几何 word版含答案,共78页。试卷主要包含了简单几何体,直观图,三视图等内容,欢迎下载使用。