所属成套资源:北师大版数学九年级下册同步PPT课件+同步教案
北师大版九年级下册1 圆精品教案设计
展开
这是一份北师大版九年级下册1 圆精品教案设计,共5页。
第三章 圆1 圆1.知道圆的有关定义及表示方法.2.掌握点和圆的位置关系.3.会根据要求画出图形.点和圆的位置关系.点和圆的位置关系.生活中关于圆的图形展示,引导学生认识圆并谈谈对圆的理解:活动1:小组合作观察车轮,你发现了什么?车轮为什么做成圆形?车轮做成三角形、正方形可以吗?探究1: (1)如图,A,B表示车轮边缘上的两点,点O表示车轮的轴心,A,O之间的距离与B,O之间的距离有什么关系?(2)C表示车轮边缘上的任意一点,要使车轮能够平稳地滚动,C,O之间的距离与A,O之间的距离应满足什么关系?明确:车轮边缘上任意两点到轴心的距离都相等, 任意一点到轴心的距离是一个定值.圆上的点到圆心的距离是一个定值.探究2:投圈游戏 一些学生正在做投圈游戏,他们呈“一”字排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?为了使投圈游戏公平,现在有一条3米长的绳子, 你准备怎么办? 定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点称为圆心,定长称为半径.注意:1.从圆的定义可知:圆是指圆周而不是圆面.2.确定圆的要素是:圆心、半径.圆心确定圆的位置,半径确定圆的大小,确定一个圆,两者缺一不可.以点O为圆心的圆记作:⊙O,读作:“圆O”.探究3:圆的有关性质战国时期的《墨经》一书中记载:“圜,一中同长也 ”.古代的圜(huán)即圆,这句话是圆的定义,它的意思是: 圆是从中心到周界各点有相同长度的图形.提问: 如果一个点到圆心距离小于半径, 那么这个点在哪里呢?大于圆的半径呢?反过来呢?试根据圆的定义填空:1.圆上各点到________________的距离都等于___________________.2.到定点的距离等于定长的点都在_________.探究4:点与圆的位置关系如图,设⊙O的半径为r,A点在圆内,B点在圆上,C点在圆外,那么OA<r, OB=r, OC>r.结论:点的位置可以确定该点到圆心的距离与半径的关系,反过来,已知点到圆心的距离与半径的关系也可以确定该点与圆的位置关系.1.画图:已知Rt△ABC,AB<BC,∠B=90°,试以点B为圆心,BA为半径画圆.2.根据图形回答下列问题:(1)看图想一想,Rt△ABC的各个顶点与⊙B在位置上有什么关系?答:点A在圆上.点B在圆内.点C在圆外(2)在以上三种关系中,点到圆心的距离与圆的半径在数量上有什么关系?活动2:探究归纳点在圆外,这个点到圆心的距离大于半径.点在圆上,这个点到圆心的距离等于半径.点在圆内,这个点到圆心的距离小于半径.例1.已知⊙O的半径r=2cm, 当OP 时,点P在⊙O上;当OA=1cm时,点A在 ;当OB=4cm时,点B在 .答案:=2cm; ⊙O内; ⊙O外例2.已知:如图,矩形ABCD的对角线相交于点O,试猜想:矩形的四个顶点能在同一个圆上吗?答:在矩形ABCD中,有OA=OB=OC=OD,四个顶点在同一个圆上,故矩形四个顶点能在同一个圆上.本节课应掌握:1.从运动和集合的观点理解圆的定义.2.点与圆的位置关系.3.证明几个点在同一个圆上的方法.
相关教案
这是一份初中数学北师大版九年级下册1 圆教学设计,共2页。
这是一份北师大版九年级下册第三章 圆1 圆教案设计,共4页。教案主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大版九年级下册1 圆教学设计,共9页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。