所属成套资源:北师大版数学七年级下册同步PPT课件+同步教案+单元试卷(包期中期末)有答案
- 七年级数学北师大版下册 第四章 三角形 3 探索三角形全等的条件 课时1 用“边边边(SSS)”条件判定三角形全等 教案 教案 3 次下载
- 七年级数学北师大版下册 第四章 三角形 3 探索三角形全等的条件 课时3 用“边角边”判定三角形全等 教案 教案 3 次下载
- 七年级数学北师大版下册 第四章 三角形 3 探索三角形全等的条件 课时2 用“角边角”“角角边”判定三角形全等 课件 课件 12 次下载
- 七年级数学北师大版下册 第四章 三角形 3 探索三角形全等的条件 课时1 用“边边边”判定三角形全等 课件 课件 12 次下载
- 七年级数学北师大版下册 第四章 三角形 3 探索三角形全等的条件 课时3 用“边角边”判定三角形全等 课件 课件 14 次下载
北师大版七年级下册3 探索三角形全等的条件精品教案
展开
这是一份北师大版七年级下册3 探索三角形全等的条件精品教案,共5页。教案主要包含了知识与技能,过程与方法,情感态度与价值观,正式作业,家庭作业等内容,欢迎下载使用。
第四章 三角形3 探索三角形全等的条件课时2 用角边角”“角角边”判定三角形全等 【知识与技能】(1)掌握“角边角(ASA)”及“角角边(AAS)”条件的内容.(2)能初步运用“角边角(ASA)”及“角角边(AAS)”条件判定两个三角形全等.【过程与方法】使学生经历作图、证明等探究过程,从而提高学生分析、作图、归纳、推理等能力.【情感态度与价值观】通过探索和动手操作的过程,体会数学思维的乐趣,激发应用数学的意识,通过合作交流,培养合作意识,体验成功的喜悦. 掌握三角形全等的“角边角”“角角边”判定方法. 运用“角边角”“角角边”的判定方法进行简单的证明. 多媒体课件. 1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?(2)到目前为止,可以作为判定两三角形全等的方法有几种?分别是什么?学生举手回答,教师点评并表扬. 教师引入:在三角形中,已知三个元素的四种情况中,我们研究了三种,接着探究已知两角一边是否可以判定两三角形全等.(板书课题) 教师:已知两角和一边对应相等有两种情况,首先我们研究第一种情况,即两角及这两角的夹边对应相等.探究1:“角边角(ASA)”教师提出问题:如果“两角及一边”条件中的边是两角所夹的边,那么这两个三角形全等吗?学生完成以下活动:1.先任意画一个△ABC,再画一个△A′B′C′,使得∠A′=∠A,∠B′=∠B,A′B′=AB.教师指导△A′B′C′的作法:如图12-2-14,(1)作线段A′B′,使A′B′=AB;(2)分别以A′,B′为顶点,A′B′为一边在A′B′的同旁画∠DA′B′,∠EB′A′,使∠DA′B′=∠CAB,∠EB′A′=∠CBA;(3)射线A′D与B′E相交于一点,记为点C′,即可得到△A′B′C′.2.将画好的△A′B′C′剪下来,放到△ABC上,发现两个三角形全等.3.教师让学生模仿上一节所学的“边角边”定理,用一句话来总结一下:两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”).教师补充:也就是说,三角形的两个角的大小和它们的夹边的长度确定了,这个三角形的形状、大小就确定了.教师出示教材P40例3:如图12-2-15,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AD=AE.师生共同分析:证明△ACD≌△ABE,就可以得出AD=AE.学生写出证明过程,教师点评.探究2:“角角边(AAS)”教师提出问题:如果把“两角和它们的夹边分别相等”改为“两角及邻边分别相等”,即“两角分别相等且其中一组等角的对边相等”,两个三角形还全等吗?教师出示教材P40例4:如图12-2-16,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.教师引导学生分析题目中的已知条件,让学生思考解题思路:如果能证明∠C=∠F,就可以利用“角边角”证明△ABC和△DEF全等,由三角形的内角和定理可以证明∠C=∠F.学生分小组交流想法,教师点评.师生共同完成证明过程,教师板书:证明:在△ABC中,∠A+∠B+∠C=180°,∴∠C=180°-∠A-∠B.同理∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA).教师:我们从这道例题可以得到两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).也就是说,三角形的两个角的大小和其中一个角的对边的长度确定了,这个三角形的形状、大小就确定了.教师紧接着让学生完成P41练习第1,2题.学生板演,教师点评.教师最后总结:(1)已知两个三角形的两组角对应相等,要证明这两个三角形全等,应选择判定方法“ASA”或“AAS”.(2)在运用“ASA”或“AAS”判定三角形全等时,同样要注意题目中的隐含条件,如公共边、公共角、对顶角等.最后,教师提出:到此为止,在三角形中已知三个条件探索两个三角形全等的问题已全部结束.然后让学生把两个三角形全等的判定方法做一个小结.学生自我回忆总结,然后小组讨论、交流,补充:边边边(SSS),边角边(SAS),角边角(ASA),角角边(AAS).1.用“角边角”“角角边”判定两个三角形全等.2.用三角形全等来证明线段或角相等.3.到目前已经学习了四种判定两个三角形全等的方法. 【正式作业】教材P43习题12.2第4,5题【家庭作业】《高效课时通》P25-P27板书设计
相关教案
这是一份北师大版七年级下册第四章 三角形3 探索三角形全等的条件教案,共2页。教案主要包含了学习目标,学习重点,学习难点等内容,欢迎下载使用。
这是一份初中数学12.2 三角形全等的判定教案设计,共3页。教案主要包含了情境引入,探究新知,课堂训练,小结归纳,作业设计等内容,欢迎下载使用。
这是一份数学七年级下册3 探索三角形全等的条件获奖教案设计,共6页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。