- 北师大版九年级数学下册教案:2.5二次函数与一元二次方程 教案 11 次下载
- 北师大版九年级数学下册教案:第二章 二次函数 复习教案 教案 17 次下载
- 北师大版九年级数学下册教案:3.2圆的对称性 教案 10 次下载
- 北师大版九年级数学下册教案:3.3垂径定理 教案 9 次下载
- 北师大版九年级数学下册教案:3.4圆周角和圆心角的关系 教案 11 次下载
初中数学北师大版九年级下册1 圆优秀教案设计
展开1 圆
1.经历形成圆的概念的过程,经历探索点和圆位置关系的过程.
2.理解圆的概念,理解弦和弧的概念,了解点与圆的位置关系,并能根据条件画出符合条件的点或图形,初步形成集合的观点.
1.经历探索圆的概念和点与圆的位置关系的过程,发展学生的实践探索能力.
2.了解点与圆的位置关系后,会在简单条件下判断点与圆的位置关系,训练学生的数学应用能力,培养学生分析问题和解决问题的能力.
1.用生活和生产中的实例激发学生的学习兴趣,唤起学生尊重知识的意识,更加热爱生活.
2.通过操作、讨论、归纳等活动,培养学生的观察想象能力,同时训练他们的语言表达能力,使学生获得学习数学的经验.
【重点】 理解圆、弦和弧的概念,会判断点与圆的位置关系.
【难点】 能根据条件画出符合条件的点或图形,初步形成集合的观念.
【教师准备】 多媒体课件和教学圆规.
【学生准备】
1.复习以前所了解的圆的相关知识.
2.直尺和圆规.
导入一:
观察下面的图形,你能发现它们有哪些共同特点吗?
【学生活动】 学生观察图片后,会发现图中都有圆,让学生再举出一些生活中类似的图形.
【老师引入】 在我们生活中,大家经常可以看到圆这个图形“靓丽”的身影,古希腊数学家毕达哥拉斯曾经说过:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形.”让我们一起来感受生活中最美的图形——圆.
[设计意图] 通过多媒体展示现实生活中有关圆的物体图片和名人名言引起学生的注意,使他们感受数学与现实生活的密切联系,增强学生的数学应用意识,激起学生学习的兴趣,从而引入课题.
导入二:
篝火晚会,是草原人民一种传统的欢庆形式.在用火烤熟食物的过程中,便互相拉手围着火堆跳舞以表达自己喜悦愉快的心情,这种欢庆的形式一直延续到今天,就形成了现在的篝火晚会.如图所示.
【问题】 你能说明篝火晚会中人们互相拉手围着火堆跳舞时,为什么习惯上围成一个圆圈吗?
[设计意图] 通过篝火晚会引出问题,学生既在了解课外知识的同时,又产生了疑问,为下面圆的概念的得出埋下了伏笔.
[过渡语] 我们在七年级已经初步了解了圆的概念和相关知识,实际上圆的概念还有另外的一种定义方法,你想了解吗?
一、圆的概念
【问题】 同学们玩过投圈游戏吗?如图所示,一些学生正在做投圈游戏,他们的投圈目标都是图中的花瓶.如果他们呈“一”字排开,这样的队形对每个人都公平吗?你认为他们应当排成什么样的队形才公平?
老师引导学生分析并回答下面的问题:
1.这样的队形对每个人来说显然不公平,因为他们到花瓶的距离不相等.
2.他们应该怎样排才是公平的?
3.上面的“花瓶”和导入中的“火堆”可以看做什么?所有人到它们的距离有什么关系?
【学生活动】 学生观察后并思考,大胆猜测,得出结论:
1.这样的队形对每个人来说显然不公平,因为他们到花瓶的距离不相等.
2.他们可以围成一个圆形,使每个同学到花瓶的距离相等,才能对每个同学都公平.
3.“花瓶”和“火堆”可以看做是一个定点,所有人到它们的距离都相等,可以看成是定长.
【老师点评】 圆可以看成是到定点的距离等于定长的所有点组成的图形,定点就是圆心,定长就是半径.以点O为圆心的圆记作☉O,读作“圆O”.
【画一画】 请同学们利用圆规画一个圆.
大部分学生产生了疑惑:在哪画圆?画多大的圆?
【师生活动】 师借机引导学生发现问题:要确定一个圆,需要满足什么条件呢?
【学生小结】 确定一个圆的要素:(1)圆心;(2)半径.
【老师强调】 确定一个圆需要两个要素,一是位置,二是大小;圆心确定其位置,半径确定其大小.只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定.只有圆心和半径都固定,圆才被唯一确定.
[设计意图] 在七年级圆的概念的基础上,又利用集合的观点对圆进行定义,提高了学生对集合思想的初步认识.
[过渡语] 通过上面的探究,我们已经了解了圆的定义,下面我们来探究和圆有关的一些概念.
二、弦和弧的概念
课件出示:
如图所示:
(1)圆中的线段AB是 ,线段CD是 .
(2)线段AB和线段CD有什么关系?
(3)点A,B之间的部分是什么?点C,D之间的部分是什么?
(4)弧有几种类型?怎么样区分呢?
(5)如何理解等圆和等弧的概念?
【学生活动】 学生通过自学的方式,逐一完成题目的回答,然后小组互相交流,代表发言.
【老师点评】
1.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.
2.圆上任意两点间的部分叫做圆弧.
3.圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.
4.弧包括优弧和劣弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.
5.能够重合的两个圆叫做等圆.
6.在同圆或等圆中,能够互相重合的弧叫做等弧.
【老师强调】 等弧的前提条件是在同圆或等圆中.
[设计意图] 通过两个探究活动引出圆及其相关的概念,明确确定圆的两个要素的作用,为下面的点和圆的位置关系的探究打下了良好的基础.
[知识拓展]
1.弧的表示法:如图所示,以B,C为端点的弧有两条:优弧BDC,记作,劣弧BAC,记作或.
2.弧的分类:弧
[过渡语] 平面上,点与圆的位置关系有几种?我们如何判断它们之间的关系呢?
三、点与圆的位置关系
课件出示:
【想一想】 如图所示,☉O是一个半径为r的圆.在圆内、圆外、圆上分别取一点,点到圆心的距离为d,你能用r与d的大小关系刻画它们的位置特征吗?
【师生活动】 学生动手操作画图,师巡视,观察学生画的图,教师在黑板上演示出所有的作图类型:
【问题】
1.在画图的过程中你认为点与圆有几种位置关系?
2.我们如何确定点与圆有几种位置关系?
【学生活动】 学生独立思考后小组讨论,代表发言.
【教师点评】
1.点与圆的位置关系有三种:点在圆外、点在圆上、点在圆内.
2.点在圆外,即d>r;点在圆上,即d=r;点在圆内,即d
[知识拓展] 点到圆心的距离和点与圆的位置关系的关系:①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d
四、圆的知识的应用
课件出示:
【做一做】 设AB=3 cm,画图说明满足下列要求的图形:
(1)到点A和点B的距离都等于2 cm的所有点组成的图形;
(2)到点A和点B的距离都小于2 cm的所有点组成的图形.
师引导学生思考下面的问题:
(1)到点A的距离等于2 cm的点组成什么样的图形?到点B的距离等于2 cm的点呢?
(2)到点A的距离小于2 cm的点在哪?到点B的距离小于2 cm的点呢?
【师生活动】 学生分组讨论,合作交流,教师参与到小组合作学习中,并给予必要的个别指导,师生共同补充完善.
【学生活动】 代表发言,说明作图的方法和理由:
(1)分别以点A,B为圆心,2 cm长为半径作☉A和☉B,到点A的距离等于2 cm的所有点组成的图形是☉A,到点B的距离等于2 cm的所有点组成的图形是☉B,两个条件同时满足应该是两圆的交点P,Q,如图(1)所示.
(2)分别以点A,B为圆心,到点A的距离小于2 cm的点在☉A的内部,到点B的距离小于2 cm的点在☉B的内部,所以应该是☉A的内部与☉B的内部的公共部分(图中阴影部分),不含边界,如图(2)所示.
[设计意图] 通过动手操作画图,让学生再次体会点与圆的位置关系,并在探究的过程中渗透了一种常用的数学法——交集法,让学生经历用集合的观点理解图形的过程.
1.圆、弦、弧的概念.
2.点与圆的位置关系.
1.下列说法中,结论错误的是 ( )
A.直径相等的两个圆是等圆
B.长度相等的两条弧是等弧
C.圆中最长的弦是直径
D.一条弦把圆分成两条弧,这两条弧可能是等弧
解析:A.直径相等的两个圆是等圆,正确,不符合题意;B.长度相等的两条弧是等弧,错误,符合题意;C.圆中最长的弦是直径,正确,不符合题意;D.直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意.故选B.
2.若☉O的半径为5 cm,点A到圆心O的距离为4 cm,那么点A与☉O的位置关系是 ( )
A.点A在圆外 B.点A在圆上
C.点A在圆内 D.不能确定
解析:∵☉O的半径为5 cm,点A到圆心O的距离为4 cm,∴d
解析:根据圆的定义,可得圆上各点到圆心的距离都相等,都等于半径.
答案:相等 半径
4.如图所示,☉O的半径为4 cm,∠AOB=60°,则弦AB的长为 cm.
解析:∵∠AOB=60°,OA=OB,∴∠OAB=∠OBA=60°,∴△OAB是等边三角形.∴AB=OA=4 cm.故填4.
5.如图(1)(2)所示,线段AB=1.8 cm,作满足下面要求的图形.
(1)到点A和点B的距离都小于1.1 cm的所有点组成的图形;
(2)到点A和点B的距离都大于1.1 cm的所有点组成的图形.
解:(1)如下图所示的阴影部分(不含边界)就是到点A和点B的距离都小于1.1 cm的所有点组成的图形.
(2)图中两个圆以外的部分就是到点A和点B的距离都大于1.1 cm的所有点组成的图形.
1 圆
1.圆、半圆、弧、等圆和等弧的概念.
2.点与圆的位置关系有三种:点在圆外、点在圆上、点在圆内.点在圆外⇔d>r;点在圆上⇔d=r;点在圆内⇔d
一、教材作业
【必做题】
1.教材第66页随堂练习第1,2题.
2.教材第68页习题3.1第1,2,3题.
【选做题】
教材第69页习题3.1第4题.
二、课后作业
【基础巩固】
1.下列说法:(1)直径是弦; (2)弦是直径; (3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆; (5)长度相等的两条弧是等弧.
其中错误的个数是 ( )
A.1 B.2 C.3 D.4
2.一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为 ( )
A.16 cm或6 cm B.3 cm或8 cm
C.3 cm D.8 cm
3.圆的半径为3,则弦AB长度的取值范围是 .
4.如图所示的矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么点B在圆P ,点C在圆P .(填“内”或“外”)
【能力提升】
5. 如图所示,AB是☉O的直径,点C,D在☉O上,AD∥OC且∠ODA=55°,则∠BOC等于 ( )
A.105° B.115° C.125° D.135°
6.如图所示,数轴上半径为1的☉O从原点0开始以每秒1个单位长度的速度向右运动,同时,原点右边距原点7个单位长度有一点P以每秒2个单位长度的速度向左运动,经过 秒后,点P在☉O上.
7.如图所示,已知△ABC,AC=3,BC=4,∠C=90°,以点C为圆心作☉C,半径为r.
(1)当r取什么值时,点A,B在☉C外?
(2)当r在什么范围时,点A在☉C内,点B在☉C外?
8.如图所示,△ABC中,∠BCA=90°,AC=2 cm,BC=4 cm, CM是中线,以C为圆心,以 cm长为半径画圆,则点A,B,M与☉C有什么样的位置关系?
【拓展探究】
9.如图所示,小虎牵着小狗上街,小虎的手臂与绳长共为2.5 m(手臂与拉直的绳子在一条直线上),手臂肩部距地面1.5 m.当小虎站立不动时,小狗在平整的地面上活动的最大区域是多少?并画出平面图.
【答案与解析】
1.B(解析:(1)根据弦的概念,直径是一条线段,且两个端点在圆上,满足弦是连接圆上两点的线段这一概念,所以(1)正确;(2)弦是连接圆上两点的线段,只有过圆心的弦才是直径,其他的弦不是直径,所以(2)错误;(3)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,所以(3)正确;(4)由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,所以(4)正确;(5)等弧是能完全重合的弧,只有长度相等的两条弧不一定能重合,所以(5)错误.故选B.)
2.B(解析:当点在圆内时,最近点的距离为5 cm,最远点的距离为11 cm,则直径是16 cm,因而半径是8 cm;当点在圆外时,最近点的距离为5 cm,最远点的距离为11 cm,则直径是6 cm,因而半径是3 cm.)
3.0
5.C (解析:∵OA=OD,∴∠ODA=∠OAD=55°,∵AD∥OC,∠AOC=∠OAD=55°,∴∠BOC=180°-∠AOC=125°.故选C.)
6.2或(解析:设x秒后点P在圆O上,∵圆O从原点0开始以每秒1个单位长度的速度向右运动,同时,原点右边距原点7个单位长度有一点P以每秒2个单位长度的速度向左运动,∴当第一次点P在圆上时,(2+1)x=7-1=6,解得x=2;当第二次点P在圆上时,(2+1)x=7+1=8,解得x=.故填2或.)
7.解:(1)当0
9.解:由题意可知AB=2.5 m,AC=1.5 m,小狗在地面上环绕跑时,圆的半径为=2.0(m),小狗活动的最大区域是以2.0 m长为半径的圆,如图所示.
由于学生在七年级就掌握了圆及其相关概念,容易造成学生的学习兴趣不高,所以本节课一开始就通过展示生活中有关圆的实物图,深深地吸引学生,使其产生很大的兴趣,让其体会到数学来源于生活,激发出学生的求知欲.由于本节课的知识点比较简单,所以本节课主要以学生自主探究为主,合作探究为辅的方式进行教学.让学生通过观察、猜想、动手操作等过程,积极主动地探究规律,通过归纳、综合概括或引申发展,从而有所发现,并提出一般技巧和规律,有效地突破了学习的重难点,调动学生的积极思维,培养了学生理解和分析能力.
本节课教学容量较大,没能留给学生充分的时间进行拓展延伸,下次教学还要把概念教学的时间缩短,为后面拓展延伸留更多的时间.
为了满足不同层次学生的需要,要对问题设置与提问进行分层设计,为每一位学生提供充分展示自己的机会.
随堂练习(教材第66页)
1.解:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈,B所经过的路径就是所要画的圆.
2.解:小明投的铅球落在区域5~6 m内,小华投的铅球落在区域6~7 m内.
习题3.1(教材第68页)
1.解:以柱脚为圆心,5 m长为半径画圆,此圆在草地上的部分是羊活动的区域.
2.(1)☉O外 (2)☉O内 (3)5
3.解:分别以A,B为圆心,以2 cm长为半径画☉A和☉B,在☉A内部且又在☉B外部所组成的图形即为所求.如右图所示.
4.解:小明可能,如:1+1+1+1+1+3=8(分);小华不可能,因为最多只能得到9×6=54(分);小红可能,如:5+5+5+5+7+1=28(分).
1.本节课的知识点主要是圆及其相关的概念,所以内容比较简单,学生通过自主探究基本上可以掌握,可以利用观察、猜想、动手操作的方式进行探究.
2.要对探究的结论及时进行归纳总结,要得出一般性的结论,为知识的运用打下良好的基础,对于本节课的难点,可以通过小组的交流合作进行突破.
已知AB=4 cm,画图说明满足下列条件的图形.
(1)到点A和B的距离都等于3 cm的所有点组成的图形;
(2)到点A和B的距离都小于3 cm的所有点组成的图形;
(3)到点A的距离大于3 cm,且到点B的距离小于2 cm的所有点组成的图形.
〔解析〕 (1)到点A和B的距离都等于3 cm的点为两圆的公共点;(2)在☉A内也在☉B内的点满足到点A和B的距离都小于3 cm;(3)在☉A外,在☉B内的点满足条件.
解:(1)如图(1)所示,分别以点A和点B为圆心,3 cm长为半径画☉A与☉B,两圆的交点C,D为所求.
(2)如图(1)所示,分别以点A和点B为圆心,3 cm长为半径画☉A与☉B,两圆的重叠部分为所求,不算边界.
(3)如图(2)所示,以点A为圆心,3 cm长为半径画☉A,以点B为圆心,2 cm长为半径画☉B,则☉B内除去两圆的重叠部分为所求.
北师大版九年级下册3 垂径定理教学设计及反思: 这是一份北师大版九年级下册3 垂径定理教学设计及反思,共6页。教案主要包含了问题探索等内容,欢迎下载使用。
初中数学北师大版九年级下册1 圆教学设计及反思: 这是一份初中数学北师大版九年级下册1 圆教学设计及反思,共7页。教案主要包含了问题探索等内容,欢迎下载使用。
初中数学北师大版九年级下册第一章 直角三角形的边角关系1 锐角三角函数教案: 这是一份初中数学北师大版九年级下册第一章 直角三角形的边角关系1 锐角三角函数教案,共15页。教案主要包含了学法点津,学点归纳总结,巩固拓展练习,挑战课标中考等内容,欢迎下载使用。