专题31 独立性检验(解答题)(新高考地区专用)(原卷版)
展开专题31 独立性检验(解答题)
1.某学生对其亲属人的饮食习惯进行了一次调查,并用茎叶图表示人的饮食指数.(说明:图中饮食指数低于的人,饮食以蔬菜为主;饮食指数高于的人,饮食以肉类为主.)
(1)根据茎叶图,帮助这位学生说明其亲属人的饮食习惯;
(2)根据以上数据完成下列列联表:
| 主食蔬菜 | 主食肉类 | 合计 |
岁以下 |
|
|
|
岁以上 |
|
|
|
合计 |
|
|
|
(3)能否有的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析.
2.某校高三年级在一次语文测试结束后,发现同学们在背诵内容方面失分较为严重.为了提升背诵效果,班主任倡议大家在早、晚读时间站起来大声诵读.为了解同学们对站起来大声诵读的态度,对全班50名同学进行调查,将调查结果进行整理后制成下表:
考试分数 | ||||||
频数 | 5 | 10 | 15 | 5 | 10 | 5 |
赞成人数 | 4 | 6 | 7 | 3 | 8 | 4 |
(1)欲使测试优秀率为30%,则优秀分数线应定为多少分?
(2)依据第(1)问的结果及样本数据研究是否赞成站起来大声诵读的态度与考试成绩是否优秀的关系,补充下面列联表,并判断是否有90%的把握认为赞成与否的态度与成绩是否优秀有关系.
| 赞成 | 不赞成 | 合计 |
优秀 |
|
|
|
不优秀 |
|
|
|
合计 |
|
| 50 |
参考公式及关系:
0.150 | 0.100 | 0.050 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
,
3.为了解中学生是否近视与性别的相关性,某研究机构分别调查了甲、乙、丙三个地区的100名中学生是否近视的情况,得到三个列联表如表所示.
甲地区 乙地区 丙地区
| 近视 | 不近视 | 合计 |
|
| 近视 | 不近视 | 合计 |
|
| 近视 | 不近视 | 合计 |
男 | 21 | 29 | 50 | 男 | 25 | 25 | 50 | 男 | 23 | 27 | 50 | ||
女 | 19 | 31 | 50 | 女 | 15 | 35 | 50 | 女 | 17 | 33 | 50 | ||
合计 | 40 | 60 | 100 | 合计 | 40 | 60 | 100 | 合计 | 40 | 60 | 100 |
(1)分别估计甲、乙两地区的中学男生中男生近视的概率;
(2)根据列联表的数据,在这三个地区中,中学生是否近视与性别关联性最强与最弱的地区分别是哪个地区?
附:,其中.
4.随着互联网的飞速发展,我国智能手机用户不断增加,手机在人们日常生活中也占据着越来越重要的地位.某机构做了一项调查,对某市使用智能手机人群的年龄、日使用时长情况做了统计,将18~40岁的人群称为“青年人”(引用青年联合会对青年人的界定),其余人群称为“非青年人”.根据调查发现“青年人”使用智能手机占比为,“非青年人”使用智能手机占比为;日均使用时长情况如下表:
时长 | 2小时以内 | 2~3小时 | 3小时以上 |
频率 | 0.4 | 0.3 | 0.3 |
将日均使用时长在2小时以上称为“频繁使用人群”,使用时长在2小时以内称为“非频繁使用人群”.已知“频繁使用人群”中有是“青年人”.
现对该市“日均使用智能手机时长与年龄的关系”进行调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据上面提供的数据.
(1)补全下列列联表;
| 青年人 | 非青年人 | 合计 |
频繁使用人群 |
|
|
|
非频繁使用人群 |
|
|
|
合计 |
|
|
|
(2)根据列联表的独立性检验,判断有多大把握认为“日均使用智能手机时长与年龄有关”?
附:,其中.
以参考数据:独立性检验界值表
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
5.某线上学习平台为保证老学员在此平台持续报名学习,以便吸引更多学员报名,从用户系统中随机选出200名学员,对该学习平台的教学成效评价和课后跟踪辅导评价进行了统计,并用以估计所有学员对该学习平台的满意度.其中对教学成效满意率为,课后跟踪辅导的满意率为,对教学成效和课后跟踪辅导都不满意的有10人.
(1)完成下面列联表,并分析是否有把握认为教学成效满意度与跟踪辅导满意度有关.
| 对教学成效满意 | 对教学成效不满意 | 合计 |
对课后跟踪辅导满意 |
|
|
|
对课后跟踪辅导不满意 |
|
|
|
合计 |
|
|
|
(2)若用频率代替概率,假设在学习服务协议终止时对教学成效和课后跟踪辅导都满意学员的续签率为,只对其中一项不满意的学员续签率为,对两项都不满意的续签率为.从该学习平台中任选10名学员,估计在学习服务终止时续签学员人数.
附:列联表参考公式:,.
临界值:
6.已知某班有50位学生,现对该班关于“举办辩论赛”的态度进行调查,,他们综合评价成绩的频数分布以及对“举办辩论赛”的赞成人数如下表:
综合评价成绩(单位:分) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 4 | 3 | 1 |
(1)请根据以上统计数据填写下面2×2列联表,并回答:是否有95%的把握认为“综合评价成绩以80分位分界点”对“举办辩论赛”的态度有差异?
| 综合评价成绩小于80分的人数 | 综合评价成绩不小于80分的人数 | 合计 |
赞成 |
|
|
|
不赞成 |
|
|
|
合计 |
|
|
|
(2)若采用分层抽样在综合评价成绩在[60,70),[70,80)的学生中随机抽取10人进行追踪调查,并选其中3人担任辩论赛主持人,求担任主持人的3人中至少有1人在[60,70)的概率.
参考公式:,其中.
参考数据:
P | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
7.年,全球爆发了新冠肺炎疫情,为了预防疫情蔓延,某校推迟年的春季线下开学,并采取了“停课不停学”的线上授课措施.为了解学生对线上课程的满意程度,随机抽取了该校的名学生(男生与女生的人数之比为)对线上课程进行评价打分,若评分不低于分视为满意.其得分情况的频率分布直方图如图所示,若根据频率分布直方图得到的评分不低于分的频率为.
(1)求的值,并估计名学生对线上课程评分的平均值;(每组数据用该组的区间中点值为代表)
(2)结合频率分布直方图,请完成以下列联表,并回答能否有的把握认为对“线上教学是否满意与性别有关”.
性别 态度 | 满意 | 不满意 | 合计 |
男生 |
|
|
|
女生 |
|
| |
合计 |
|
|
附:随机变量
8.针对偏远地区因交通不便、消息闭塞导致优质农产品藏在山中无人识的现象,各地区开始尝试将电商扶贫作为精准扶贫的重要措施.为了解电商扶贫的效果,某部门随机就100个贫困地区进行了调查,其当年的电商扶贫年度总投入(单位:万元)及当年人均可支配年收入(单位:元)的贫困地区数目的数据如下表:
人均可支配年收入(元) 电商扶贫年度总投入(万元) | (5000,10000] | (10000,15000] | (15000,20000] |
(0,500] | 5 | 3 | 2 |
(500,1000] | 3 | 21 | 6 |
(1000,3000) | 2 | 34 | 24 |
(1)估计该年度内贫困地区人均可支配年收入过万的概率,并求本年度这100个贫困地区的人均可支配年收入的平均值的估计值(同一组数据用该组数据区间的中间值代表);
(2)根据所给数据完成下面的列联表,并判断是否有99%的把握认为当地的人均可支配年收入是否过万与当地电商扶贫年度总投入是否超过千万有关.
| 人均可支配年收入≤10000元 | 人均可支配年收入>10000元 |
电商扶贫年度总投入不超过1000万 |
|
|
电商扶贫年度总投入超过1000万 |
|
|
附:,其中.
0.050 | 0.01 | 0.005 | |
3.841 | 6.635 | 7.879 |
9.在关研究表明,正确佩戴安全头盔,规范使用安全带能够将交通事故死亡风险大幅降低,对保护群众生命安全具有重要作用.2020年4月,“一盔一带”安全守护行动在全国各地开展.行动期间,公安交管部门将加强执法管理,依法查纠摩托车和电动自行车骑乘人员不佩戴安全头盔,汽车驾乘人员不使用安全带的行为,助推养成安全习惯.该行动开展一段时间后,某市针对电动自行车骑乘人员是否佩戴安全头盔问题进行调查,在随机调查的1000名骑行人员中,记录其年龄和是否佩戴头盔情况,得到如下的统计图表:
(1)估算该市电动自行车骑乘人员的平均年龄;
(2)根据所给的数据,完成下面的列联表:
是否佩戴头盔 年龄 | 是 | 否 |
|
| |
|
|
(3)根据(2)中的列联表,判断是否有把握认为遵守佩戴安全头盔与年龄有关?
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
10.某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照北京暴雨前后两个时间收集有效投票,暴雨后的投票收集了份,暴雨前的投票也收集了份,所得统计结果如下表:
| 支持 | 不支持 | 总计 |
北京暴雨后 | |||
北京暴雨前 | |||
总计 |
已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为.
(1)求列联表中的数据、、、的值;
(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?
(3)能够有多大把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关?
11.某学习研究机构调研数学学习成绩对物理学习成绩的影响,随机抽取了100名学生的数学成绩和物理成绩(单位:分).
物理 数学 | 合计 | |||
24 | 18 | 6 | 48 | |
8 | 12 | 16 | 36 | |
2 | 6 | 8 | 16 | |
合计 | 34 | 36 | 30 | 100 |
(1)随机抽取一名同学,试估计其“数学考分不低于60分,且物理考分不低于50分”的概率;
(2)完成下面的2×2列联表.
物理 数学 | 合计 | ||
|
|
| |
|
|
| |
合计 |
|
|
|
(3)根据(2)中的数据,判断是否有99%把握认为学生的数学成绩对物理成绩有影响.
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.6354 | 10.828 |
附
12.某疫苗研发机构将其生产的某款疫苗在征集的志愿者中进行人体试验,现随机选取100名试验者检验结果并评分(满分为100分),其中评分不低于80分视为强力有效,否则视为效力一般.得到如图所示的频率分布直方图.
(1)求的值,并估计所有试验者的平均得分(同一组中的数据用该组区间的中点值作代表);
(2)将选取的100名试验者的性别与疫苗是否强力有效进行统计,请将下列2×2列联表补充完整,并能否判断在犯错误的概率不超过0.05的前提下认为疫苗的强效力与性别有关?
| 强力有效 | 效力一般 | 合计 |
男性 |
|
| 50 |
女性 | 10 |
|
|
合计 |
|
| 100 |
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
13.2021届高考体检工作即将开展,为了了解高三学生的视力情况,某校医务室提前对本校的高三学生视力情况进行调查,在高三年级1000名学生中随机抽取了100名学生的体检数据,并得到如下图的频率分布直方图.
年级名次 是否近视 | ||
近视 | 40 | 30 |
不近视 | 10 | 20 |
(1)若直方图中前四组的频数依次成等比数列,试估计全年级高三学生视力的中位数(精确到0.01);
(2)该校医务室发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对抽取的100名学生名次在名和名的学生的体检数据进行了统计,得到表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(3)在(2)中调查的不近视的学生中按照分层抽样抽取了6人,进一步调查他们良好的护眼习惯,求在这6人中任取2人,至少有1人的年级名次在名的概率.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
,其中.
14.习近平总书记在党的十九大工作报告中提出,永远把人民美好生活的向往作为奋斗目标.在这一号召下,全国人民积极工作,健康生活.当前,“日行万步”正式成为健康生活的代名词.某地一研究团队统计了该地区位居民的日行步数,得到如下表格:
日行步数(单位:千步) | |||||||
人数 |
(1)为研究日行步数与居民年龄的关系,以日行步数是否超过千步为标准进行分层抽样,从上述位居民中抽取人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有的把握认为日行步数与居民年龄超过岁有关;
| 日行步数千步 | 日行步数千步 | 总计 |
岁以上 |
|
| |
岁以下(含岁) |
|
| |
总计 |
|
|
(2)以这位居民日行步数超过千步的频率,代替该地区位居民日行步数超过千的概率,每位居民日行步数是否超过千相互独立.为了深入研究,该研究团队随机调查了位居民,其中日行步数超过千的最有可能(即概率最大)是多少位居民?
附:
,其中.
15.为激活国内消费市场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组,第2组,第3组,第4组,第5组,得到频率分布直方图,如图.
(1)求出频率分布直方图中的值和这200人的平均年龄;
(2)从第1,2组中用分层抽样的方法抽取5人,并再从这5人中随机抽取2人进行电话回访,求这两人恰好属于不同组别的概率;
(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否属“购买力强人群”与年龄有关?附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
专题28 导数及其应用(解答题)(新高考地区专用)(原卷版): 这是一份专题28 导数及其应用(解答题)(新高考地区专用)(原卷版),共7页。试卷主要包含了已知函数,,已知函数,设函数,已知函数,其中等内容,欢迎下载使用。
专题26 双曲线(解答题)(新高考地区专用)(原卷版): 这是一份专题26 双曲线(解答题)(新高考地区专用)(原卷版),共6页。试卷主要包含了已知双曲线等内容,欢迎下载使用。
专题23 数列(解答题)(新高考地区专用)(原卷版): 这是一份专题23 数列(解答题)(新高考地区专用)(原卷版),共9页。试卷主要包含了已知数列满足且,数列是等比数列,前n项和为,,,在①对任意满足;②;③,已知等差数列的前项和为,且,已知数列满足,且等内容,欢迎下载使用。