终身会员
搜索
    上传资料 赚现金

    华东师大版七年级下册数学6.2 解一元一次方程 第2课时教案

    立即下载
    加入资料篮
    华东师大版七年级下册数学6.2 解一元一次方程 第2课时教案第1页
    华东师大版七年级下册数学6.2 解一元一次方程 第2课时教案第2页
    还剩2页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    华师大版七年级下册2 解一元一次方程精品第2课时教案设计

    展开

    这是一份华师大版七年级下册2 解一元一次方程精品第2课时教案设计,共4页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
    6.2 解一元一次方程2课时教学目标【知识与能力】1.理解并掌握方程的两个变形规则;2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;3.运用方程的两个变形规则解简单的方程.【过程与方法】通过对解方程过程的探讨,使学生获得解方程的步骤,体会数学中由特殊到一般的思想方法.【情感态度价值观】通过本节的教学,应该达到使学生体会数学的价值的目的.教学重难点【教学重点】运用方程的两个变形规则解简单的方程.【教学难点】运用方程的两个变形规则解简单的方程.课前准备课件教学过程一、 情境导入,初步认识1.等式有哪些性质?2.在4x-2=1+2x两边都减去_____,得2x-2=1,两边再同时加上_____,得2x=3,变形依据是_____.3.在1/4x-1=2中两边乘以_____,得x-4=8,两边再同时加上4,得x=12,变形依据分别是_____.【教学说明】对等式的性质及利用性质进行变形的复习,为方程的变形打好基础.二、思考探究,获取新知1.方程是不是等式?2.你能根据等式的性质类比出方程的变形依据吗?【归纳结论】方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不为零的数,方程的解不变.3.你能根据这些规则,对方程进行适当的变形吗?4.解下列方程:(1)x-5=7;(2)4x=3x-4.分析:(1)利用方程的变形规律,在方程x-5=7的两边同时加上5,即x -5+5=7+5,可求得方程的解.(2)利用方程的变形规律,在方程4x=3x-4的两边同时减去3x,即4x-3x=3x-3x-4,可求得方程的解.像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.【教学说明】(1)上面两小题方程变形中,均把含未知数x的项,移到方程的左边,而把常数项移到了方程的右边.(2)移项需变号.5.解下列方程: (1)-5x=2;   (2)3/2x=1/3;分析:(1)利用方程的变形规律,在方程-5x=2的两边同除以-5,即-5x÷(-5)= 2÷(-5) 可求得方程的解.(2)利用方程的变形规律,在方程3/2x=1/3的两边同除以3/2或同乘以2/3,即3/2x÷3/2=1/3÷3/2(或3/2x×2/3=1/3×2/3),可求得方程的解.解: (1)方程两边都除以-5,得x=-2/5.(2)方程两边都除以3/2,得 x=1/3÷3/2=1/3×2/3,即x=2/9.方程两边同乘以2/3,得 x=1/3×2/3=2/9.即x=2/9.【归纳结论】上面两题的变形通常称作将未知数的系数化为1 .上面两个解方程的过程,都是对方程进行适当的变形,得到x=a的形式.6.根据上面的例题,你能总结出解一元一次方程的一般步骤吗?【归纳结论】解方程的一般步骤是:移项;合并同类项;系数化为1.三、运用新知,深化理解1.教材第7页例3.2.下列方程变形错误的是(   )A.2x+5=02x=-5B.5=x+3x=-5-3C.-0.5x=3x=-6D.4x=-8x=-23.下列方程求解正确的是(   )A.-2x=3,解得x=-2/3B.2/3x=5, 解得x=10/3C.3x-2=1,解得x=1 D.2x+3=1,解得x=24.方程-1/3x=2两边都_______,得x=_______.5.方程5x=6的两边都_______,得x=_______ .6.方程3x+1=4的两边都_______得3x=3.7.方程2y-3=-1的两边都_______得2y=2.8.下面是方程x+3=8的三种解法,请指出对与错,并说明为什么?(1)x+3=8=x=8-3=5;(2)x+3=8,移项得x=8+3,所以x=11;(3)x+3=8移项得x=8-3 , 所以x=5.9.解下列方程.(1)2x3=65;(2)1.3x +1.2-2x =1.2-2.7x.(3)3y-2=y+1+6y10.方程 2x+1=3和方程2x-a=0 的解相同,求a的值.11.已知y1=3x+2,y2=4-x.当x取何值时,y1与 y2互为相反数?【教学说明】通过练习,使学生熟练的利用方程的变形规则解方程.【答案】2.B           3.C         4.乘以-3  -6        5.除以5  6.减1        7.加38.解:(1)这种解法是错的.变形后新方程两边的值和原方程两边的值不相等,所以解方程时不能连等;(2)这种解法也是错误的,移项要变号;(3)这种解法是正确的.9.分析:把方程中的比先化为分数,再解方程.解:(1) 2x3=65,2x/3=6/5,系数化为1x=6/5÷2/3= 6/5×3/2= 9/5.(2) 1.3x+1.2-2x=1.2-2.7x,移项1.3x-2x+2.7x=1.2-1.2,合并同类项2x=0,系数化为1x=0÷2=0.(3)3y-2=y+1+6y,合并同类项 3y-2=7y+1,移项  3y-7y=1+2,合并同类项-4y=3,系数化为1y=3÷(-4)=3 ×(-1/4) =-3/4 .10.解:2x+1=32x=3-12x=2 x=1因为,方程 2x+1=3和方程2x-a=0 的解相同所以,把x=1代入2x-a=0中得:2×1-a=02-a=0-a=-2a=2即,a的值为2.11.分析:y1与 y2互为相反数,即y1+y2=0.本题就转化为求方程3x+2+4-x=0的解.解:由题意得:3x+2+4-x=0,3x-x=-4-2,x=-3.所以当x= -3时,y1与 y2互为相反数.四、师生互动,课堂小结先小组内交流收获和感想然后以小组为单位派代表进行总结.教师加以补充.课后作业1.布置作业:教材第9页习题6.2.1中第1 、2 、3题.2.完成练习册中本课时练习.五、教学反思本节课是在等式基本性质的基础上总结出方程的变形规则,在根据方程的变形规则,通过移项、系数化为1来解简单的方程.学生掌握的较好.  

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map