|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题10 圆锥曲线中的最值的问题-2021年高考数学微专题复习(新高考地区专用)练习
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题10 圆锥曲线中的最值的问题(原卷版).docx
    • 解析
      专题10 圆锥曲线中的最值的问题(解析版).docx
    专题10 圆锥曲线中的最值的问题-2021年高考数学微专题复习(新高考地区专用)练习01
    专题10 圆锥曲线中的最值的问题-2021年高考数学微专题复习(新高考地区专用)练习02
    专题10 圆锥曲线中的最值的问题-2021年高考数学微专题复习(新高考地区专用)练习01
    专题10 圆锥曲线中的最值的问题-2021年高考数学微专题复习(新高考地区专用)练习02
    专题10 圆锥曲线中的最值的问题-2021年高考数学微专题复习(新高考地区专用)练习03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题10 圆锥曲线中的最值的问题-2021年高考数学微专题复习(新高考地区专用)练习

    展开
    这是一份专题10 圆锥曲线中的最值的问题-2021年高考数学微专题复习(新高考地区专用)练习,文件包含专题10圆锥曲线中的最值的问题原卷版docx、专题10圆锥曲线中的最值的问题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    题型一 、与线段有关的最值问题
    与线段有关的最值问题关键是建立关于线段的目标函数,然后运用基本不等式或者函数有关的问题,运用基本不等式或者函数求解。线段的长度可以通过两点间的距离或者利用相交弦长公式进行求解。
    例1、(2020届山东省日照市高三上期末联考)过抛物线的焦点作直线交抛物线于,两点,为线段的中点,则( )
    A.以线段为直径的圆与直线相离 B.以线段为直径的圆与轴相切
    C.当时,D.的最小值为4
    (2020届山东省泰安市高三上期末)已知抛物线的焦点为F(4,0),过F作直线l交抛物线于M,N两点,则p=_______,的最小值为______.
    例3(2019南京、盐城一模)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:eq \f(x2,4)+y2=1上的一点,从原点O向圆M:(x-x0)2+(y-y0)2=r2作两条切线分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.
    (1) 若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;
    (2) 若r=eq \f(2\r(5),5).
    ①求证:k1k2=-eq \f(1,4);
    ②求OP·OQ的最大值.
    题型二、 与向量有关的最值问题
    与向量有关的最值问题关键就是表示出点坐标,通过数量积转化为函数问题,然后运用基本不等式或者求导研究最值。
    例4、(2020届浙江省高中发展共同体高三上期末)已知椭圆的内接的顶点为短轴的一个端点,右焦点,线段中点为,且,则椭圆离心率的取值范围是___________.
    例5、(2018苏州暑假测试)如图,已知椭圆O:eq \f(x2,4)+y2=1的右焦点为F,点B,C分别是椭圆O的上、下顶点,点P是直线l:y=-2上的一个动点(与y轴的交点除外),直线PC交椭圆于另一个点M.
    (1) 当直线PM经过椭圆的右焦点F时,求△FBM的面积;
    (2) ①记直线BM,BP的斜率分别为k1,k2,求证:k1•k2为定值;
    ②求eq \(PB,\s\up6(→))·eq \(PM,\s\up6(→))的取值范围.
    题型三、与坐标或参数有关的最值问题
    与坐标或参数有关的最值问题关键是建立目标函数,然后运用基本不等式或者求导或者通过简单的函数问题进行求解。
    例6、(2019·山东高三月考)已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于两点,延长交椭圆于点,的周长为8.
    (1)求的离心率及方程;
    (2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.
    例7、(2019泰州期末)如图,在平面直角坐标系xOy中,椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左顶点为A,点B是椭圆C上异于左、右顶点的任一点,P是AB的中点,过点B且与AB垂直的直线与直线OP交于点Q.已知椭圆C的离心率为eq \f(1,2),点A到右准线的距离为6.
    (1) 求椭圆C的标准方程;
    (2) 设点Q的横坐标为x0,求x0的取值范围.
    例8、(2019扬州期末)在平面直角坐标系中,椭圆M:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(1,2),左、右顶点分別为A,B,线段AB的长为4.P在椭圆M上且位于第一象限,过点A,B分别作l1⊥PA,l2⊥PB,直线l1,l2交于点C.
    (1) 若点C的横坐标为-1,求点P的坐标;
    (2) 若直线l1与椭圆M的另一交点为Q,且eq \(AC,\s\up6(→))=λeq \(AQ,\s\up6(→)),求λ的取值范围.
    二、达标训练
    1、(2018无锡期末) 已知双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)与椭圆eq \f(x2,16)+eq \f(y2,12)=1的焦点重合,离心率互为倒数,设F1,F2分别为双曲线C的左、右焦点,P为右支上任意一点,则eq \f(PFeq \\al(2,1),PF2)的最小值为________.
    2、(2019南通、扬州、泰州、淮安三调)如图,在平面直角坐标系xOy中,已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(\r(2),2),长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.
    (1) 若直线l的斜率为eq \f(1,2),求eq \f(AP,AQ)的值;
    (2) 若eq \(PQ,\s\up6(→))=λeq \(AP,\s\up6(→)),求实数λ的取值范围.
    3、(2016苏州暑假测试)如图,已知椭圆C1:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点为 F,上顶点为 A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3-eq \r(2)的直线l与AF平行且与圆C2相切.
    (1) 求椭圆C1的离心率;
    (2) 若椭圆C1的短轴长为 8,求eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))的最大值.
    相关试卷

    专题22 利用空间向量研究探索性与最值问题-2021年高考数学微专题复习(新高考地区专用)练习: 这是一份专题22 利用空间向量研究探索性与最值问题-2021年高考数学微专题复习(新高考地区专用)练习,文件包含专题22利用空间向量研究探索性与最值问题原卷版docx、专题22利用空间向量研究探索性与最值问题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    专题43 圆锥曲线中角的常见问题的处理-2021年高考数学微专题复习练习(新高考地区专用): 这是一份专题43 圆锥曲线中角的常见问题的处理-2021年高考数学微专题复习练习(新高考地区专用),文件包含专题43圆锥曲线中角的常见问题的处理原卷版docx、专题43圆锥曲线中角的常见问题的处理解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    专题42 圆锥曲线中的向量问题-2021年高考数学微专题复习(新高考地区专用)练习: 这是一份专题42 圆锥曲线中的向量问题-2021年高考数学微专题复习(新高考地区专用)练习,文件包含专题42圆锥曲线中的向量问题原卷版docx、专题42圆锥曲线中的向量问题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map