终身会员
搜索
    上传资料 赚现金
    专题44 巧妙设点研究圆锥曲线问题-2021年高考数学微专题复习(新高考地区专用)练习
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题44 巧妙设点研究圆锥曲线问题(原卷版).docx
    • 解析
      专题44 巧妙设点研究圆锥曲线问题(解析版).docx
    专题44 巧妙设点研究圆锥曲线问题-2021年高考数学微专题复习(新高考地区专用)练习01
    专题44 巧妙设点研究圆锥曲线问题-2021年高考数学微专题复习(新高考地区专用)练习02
    专题44 巧妙设点研究圆锥曲线问题-2021年高考数学微专题复习(新高考地区专用)练习01
    专题44 巧妙设点研究圆锥曲线问题-2021年高考数学微专题复习(新高考地区专用)练习02
    专题44 巧妙设点研究圆锥曲线问题-2021年高考数学微专题复习(新高考地区专用)练习03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题44 巧妙设点研究圆锥曲线问题-2021年高考数学微专题复习(新高考地区专用)练习

    展开
    这是一份专题44 巧妙设点研究圆锥曲线问题-2021年高考数学微专题复习(新高考地区专用)练习,文件包含专题44巧妙设点研究圆锥曲线问题原卷版docx、专题44巧妙设点研究圆锥曲线问题解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    一、题型选讲
    题型一 、巧妙设点,降低运算量
    例1、(2018南京、盐城一模)如图,在平面直角坐标系xOy中,椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(3),\f(\r(3),2)))处时,点Q的坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2\r(3),3),0)).
    (1) 求椭圆C的标准方程;
    (2) 设直线MN交y轴于点D,当点M,N均在y轴右侧,且eq \(DN,\s\up6(→))=2eq \(NM,\s\up6(→))时,求直线BM的方程.
    例2、(2018南京学情调研)如图,已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率e=eq \f(\r(2),2),一条准线方程为x=2.过椭圆的上顶点A作一条与x轴,y轴都不垂直的直线交椭圆于另一点P,P关于x轴的对称点为Q.
    (1) 求椭圆的方程;
    (2) 若直线AP,AQ与x轴交点的横坐标分别为m,n,求证:mn为常数,并求出此常数.
    题型二、设而不求法,降低运算量
    例3、【2019年高考浙江卷】如图,已知点为抛物线的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记的面积分别为.
    (1)求p的值及抛物线的准线方程;
    (2)求的最小值及此时点G的坐标.
    例4、(2016南京三模)如图,在平面直角坐标系xOy中,已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(\r(2),2),点(2,1)在椭圆C上.
    (1) 求椭圆C的方程;
    (2) 设直线l与圆O:x2+y2=2相切,与椭圆C相交于P,Q两点.
    ①若直线l过椭圆C的右焦点F,求△OPQ的面积;
    ②求证: OP⊥OQ.

    题型三、巧妙设点解决向量问题
    例5、(2016南通、扬州、淮安、宿迁、泰州二调)如图,在平面直角坐标系xOy中,已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(\r(2),2).A为椭圆上异于顶点的一点,点P满足=2.
    (1) 若点P的坐标为(2,eq \r(2)),求椭圆的方程;
    (2) 设过点P的一条直线交椭圆于B,C两点,且=m,直线OA,OB的斜率之积为-eq \f(1,2),求实数m的值.
    题型四、抛物线的特殊设点技巧
    例6、【2018年高考浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
    (1)设AB中点为M,证明:PM垂直于y轴;
    (2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.
    二、达标训练
    1、【2020年高考全国Ⅰ卷理数】已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
    (1)求E的方程;
    (2)证明:直线CD过定点.
    2、(2020届山东省潍坊市高三上学期统考)已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于两点,延长交椭圆于点,的周长为8.
    (1)求的离心率及方程;
    (2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.
    3、【2019年高考全国Ⅱ卷理数】已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
    (1)求C的方程,并说明C是什么曲线;
    (2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
    (i)证明:是直角三角形;
    (ii)求面积的最大值.
    4、(2016南京、盐城一模)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:eq \f(x2,4)+y2=1上的一点,从原点O向圆M:(x-x0)2+(y-y0)2=r2作两条切线分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.
    (1) 若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;
    (2) 若r=eq \f(2\r(5),5).
    ①求证:k1k2=-eq \f(1,4);
    ②求OP·OQ的最大值.
    相关试卷

    专题44 巧妙设点研究圆锥曲线问题-2022年高考数学微专题复习(新高考地区专用): 这是一份专题44 巧妙设点研究圆锥曲线问题-2022年高考数学微专题复习(新高考地区专用),文件包含专题44巧妙设点研究圆锥曲线问题解析版docx、专题44巧妙设点研究圆锥曲线问题原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    2022高考数学一轮复习专题44 巧妙设点研究圆锥曲线问题(原卷): 这是一份2022高考数学一轮复习专题44 巧妙设点研究圆锥曲线问题(原卷),共5页。试卷主要包含了题型选讲,设而不求法,降低运算量,巧妙设点解决向量问题,抛物线的特殊设点技巧等内容,欢迎下载使用。

    2022高考数学一轮复习专题44 巧妙设点研究圆锥曲线问题(解析卷): 这是一份2022高考数学一轮复习专题44 巧妙设点研究圆锥曲线问题(解析卷),共15页。试卷主要包含了题型选讲,设而不求法,降低运算量,巧妙设点解决向量问题,抛物线的特殊设点技巧等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map