终身会员
搜索
    上传资料 赚现金

    湘教版八年级数学下册 第1章 小结与复习(PPT课件)

    立即下载
    加入资料篮
    湘教版八年级数学下册 第1章 小结与复习(PPT课件)第1页
    湘教版八年级数学下册 第1章 小结与复习(PPT课件)第2页
    湘教版八年级数学下册 第1章 小结与复习(PPT课件)第3页
    湘教版八年级数学下册 第1章 小结与复习(PPT课件)第4页
    湘教版八年级数学下册 第1章 小结与复习(PPT课件)第5页
    湘教版八年级数学下册 第1章 小结与复习(PPT课件)第6页
    湘教版八年级数学下册 第1章 小结与复习(PPT课件)第7页
    湘教版八年级数学下册 第1章 小结与复习(PPT课件)第8页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学湘教版八年级下册第1章 直角三角形综合与测试复习课件ppt

    展开

    这是一份初中数学湘教版八年级下册第1章 直角三角形综合与测试复习课件ppt,共29页。PPT课件主要包含了要点梳理,勾股定理,勾股定理的逆定理,勾股数,角的平分线的性质,OP平分∠AOB,PD⊥OA于D,PE⊥OB于E,PDPE,角的平分线的判定等内容,欢迎下载使用。


    直角三角形的性质定理1
    直角三角形的两个锐角______.
    直角三角形的判定定理1
    有两个角______的三角形是直角三角形.
    一、直角三角形的性质与判定
    直角三角形的重要推论
    1.直角三角形斜边上的中线等于斜边的_____.
    2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的_____.
    3.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于_____.
    1.如果直角三角形两直角边分别为a,b,斜边 为c,那么
    a2 + b2 = c2
    即直角三角形两直角边的平方和等于斜边的平方.
    在直角三角形中才可以运用
    2.勾股定理的应用条件
    3.勾股定理表达式的常见变形: a2=c2-b2, b2=c2-a2,
    如果三角形的三边长a,b,c满足 a2 +b2=c2 ,那么这个三角形是直角三角形.
    满足a2 +b2=c2的三个正整数,称为勾股数.
    斜边和一条直角边对应相等的两个直角三角形全等. 简写成“斜边、直角边”或“HL”.
    注意:①对应相等.②“HL”仅适用直角三角形,③书写格式应为: ∵在Rt△ ABC 和Rt△ DEF中, AB =DE, AC=DF, ∴Rt△ABC≌Rt△DEF (HL)
    四、直角三角形全等的判定
    五、 角平分线的性质与判定
    例1:如图,AB∥DF,AC⊥BC于C,CB的延长线与DF交于点E,若∠A=20°,则∠CEF等于(  )A.110° B.100° C.80° D.70°
    【分析】∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=90°-∠A=90°-20°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°-∠1=180°-70°=110°.
    例2 如图,在△ABC中,AB=AC,点E,F分别是边AB,AC的中点,点D在边BC上.若DE=DF,AD=2,BC=6,求四边形AEDF的周长.
    解:∵点E,F分别是边AB,AC的中点,∴AE=BE= AB,AF=CF= AC,∵AB=AC,∴AE=AF,在△ADE和△ADF中,∴△ADE≌△ADF(SSS),∴∠DAE=∠DAF,即AD平分∠BAC,
    ∴BD=CD= BC=3,AD⊥BC,∴∠ADB=∠ADC=90°,∵在Rt△ABD和Rt△ACD中,E,F分别是边AB,AC的中点,∴DE= AB,DF= AC,∴AE=AF=DE=DF,∴四边形AEDF的周长=4AE=2AB=
    1.等腰三角形的一个底角为75°,腰长4cm,那么腰上的高是______cm,这个三角形的面积是_____cm2.
    例3 在△ABC中,已知BD是高,∠B=90°,∠A、∠B、∠C的对边分别是a、b、c,且a=3,b=4,求BD的长.
    解:∵∠B=90°,∴b是斜边,则在Rt△ABC中,由勾股定理,得又∵S△ABC= b•BD= ac,
    在直角三角形中,已知两边的长求斜边上的高时,先用勾股定理求出第三边,然后用面积求斜边上的高较为简便.在用勾股定理时,一定要清楚直角所对的边才是斜边,如在本例中不要受勾股数3,4,5的干扰.
    2.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是(  )A.25 B.14 C.7 D.7或25
    解:由折叠知:DA=DB,△ACD为直角三角形. 在Rt△ACD中,AC2+CD2=AD2①, 设CD=x cm,则AD=BD=(8-x)cm, 代入①式,得62+x2=(8-x)2, 化简,得36=64-16x, 所以x= =1.75, 即CD的长为1.75 cm.
    3.如图,有一张直角三角形纸片,两直角边AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕是DE,求CD的长.
    例4 已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,a=n2-1,b=2n,c=n2+1(n>1),判断△ABC是否为直角三角形.
    解:由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1, c2=(n2+1)2 =n4+2n2+1, 从而a2+b2=c2, 故可以判定△ABC是直角三角形.
    运用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①先判断哪条边最大;②分别用代数方法计算出a2+b2和c2的值(c边最大);③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
    4.已知下列图形中的三角形的顶点都在正方形的格点上,可以判定三角形是直角三角形的有________.
    5. B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8 n mile的速度前进,乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙船到P岛,两岛相距34 n mile,你知道乙船是沿哪个方向航行的吗?
    解:甲船航行的距离为BM= 16(n mile),乙船航行的距离为BP= 30(n mile).∵162+302=1156,342=1156,∴BM2+BP2=MP2,∴△MBP为直角三角形,∴∠MBP=90° ,∴乙船是沿着南偏东30°方向航行的.
    6.如图,在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A与∠C关系并加以证明.
    解:猜想∠A+∠C=180°.连接AC.∵∠ABC=90°,∴在Rt△ABC中,由勾股定理得AC= 25cm,∵AD2+DC2=625=252=AC2,∴△ADC是直角三角形,且∠D=90°,∵∠DAB+∠B+∠BCD+∠D=180°,∴∠DAB+∠BCD=180°,即∠A+∠C=180°.
    例5 如图,两根长均为12米的绳子一端系在旗杆上,旗杆与地面垂直,另一端分别固定在地面上的木桩上,两根木桩离旗杆底部的距离相等吗?
    【分析】将本题中的实际问题转化为数学问题就是确定BD是否等于CD.由已知条件可知AB=AC,AD⊥BC.
    ∴∠ADB=∠ADC=90°.
    在Rt△ADB和Rt△ADC中,
    ∴ Rt△ADB ≌ Rt△ADC(HL).
    例6 如图,在△ABC中,EB=FC,且BD = CD, DE⊥AB, DF⊥AC.垂足分别为E , F.求证:AD是△ABC的角平分线.
    【分析】先利用“HL”证明Rt△BDE ≌ Rt△CDF,从而得到DE=DF,再利用角平分线的判定定理证明AD是△ABC的角平分线.
    在Rt△BDE 和 Rt△CDF中,
    ∴ Rt△BDE ≌ Rt△CDF(HL).
    ∵DE⊥AB, DF⊥AC,
    ∴ AD是△ABC的角平分线.
    例7 如图,∠1=∠2,点P为BN上的一点,∠PCB+ ∠BAP=180 °,求证:PA=PC.
    【分析】由角平分线的性质易想到过点P向∠ABC的两边作垂线段PE、PF,构造角平分线的基本图形.
    证明:过点P作PE⊥BA,PF⊥BC,垂足分别为E,F.
    ∵∠1=∠2,PE⊥BA,PF⊥BC,垂足分别为E,F.
    ∴PE=PF, ∠PEA=∠PFC=90 °.
    ∵ ∠PCB+ ∠BAP=180 °,又∠BAP+∠EAP=180 °.
    ∴ ∠EAP=∠PCB.
    在△APE和△CPF中,
    ∴ △APE ≌ △CPF(AAS),
    【证法2思路分析】由角是轴对称图形,其对称轴是角平分线所在的直线,所以可想到构造轴对称图形.方法是在BC上截取BD=AB,连接PD(如图).则有△PAB≌△PDB,再证△PDC是等腰三角形即可获证.
    证明过程请同学们自行完成!
    【归纳拓展】角的平分线的性质是证明线段相等的常用方法.应用时要依托全等三角形发挥作用.作辅助线有两种思路,一种作垂线段构造角平分线性质基本图;另一种是构造轴对称图形.
    7.如图,∠1=∠2,点P为BN上的一点, PA=PC ,求证:∠PCB+ ∠BAP=180 °.
    【证明】过点P作PE⊥BA,PF⊥BC,垂足分别为E,F.
    在Rt△APE和Rt△CPF中,
    ∴ Rt△PAE ≌ Rt△PCF(HL).
    ∴ ∠ EAP= ∠ FCP.
    ∵ ∠BAP+∠EAP=180 °,
    ∴ ∠PCB+ ∠BAP=180 °.
    想一想:本题如果不给图,条件不变,请问∠PCB与∠PAB有怎样的数量关系呢?

    相关课件

    初中数学湘教版九年级下册第4章 概率综合与测试复习ppt课件:

    这是一份初中数学湘教版九年级下册第4章 概率综合与测试复习ppt课件,文件包含复习题4pptx、小结与复习pptx、章末复习doc等3份课件配套教学资源,其中PPT共43页, 欢迎下载使用。

    数学第4章 锐角三角函数综合与测试复习课件ppt:

    这是一份数学第4章 锐角三角函数综合与测试复习课件ppt,共45页。PPT课件主要包含了要点梳理,锐角三角函数,a2+b2=c2,∠A=90°-∠B,解直角三角形,cos90°-α,sin90°-α,第二步输入角度值,第二步输入函数值,方法①等内容,欢迎下载使用。

    初中数学湘教版九年级上册第3章 图形的相似综合与测试复习ppt课件:

    这是一份初中数学湘教版九年级上册第3章 图形的相似综合与测试复习ppt课件,共34页。PPT课件主要包含了要点梳理,比例的基本性质─,比例的合比性质─,比例的等比性质,比例的性质,黄金比,≈0618,黄金分割,黄金分割点,黄金分割比等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map