


2021年中考数学一轮复习《勾股定理》基础练习卷(含答案)
展开一、选择题
下列长度的各组线段,能组成直角三角形的是( )
A.12,15,18 B.12,35,36 C.0.3,0.4,0.5 D.2,3,4
适合下列条件的△ABC中,直角三角形的个数为( )
①a=3,b=4,c=5;
②a=6,∠A=45°;
③a=2,b=2,c=2;
④∠A=38°,∠B=52°.
A.1个 B.2个 C.3个 D.4个
若三边长满足,则是( )
A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形
△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是( )
A.∠A:∠B:∠C=l:2:3
B.三边长为a,b,c的值为1,2,
C.三边长为a,b,c的值为,2,4
D.a2=(c+b)(c﹣b)
如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )
A.90米 B.100米 C.120米 D.150米
已知一直角三角形的木板,三边的平方和为12800cm2,则斜边长为( )
A.80cm B.30cm C.90cm D.120cm
在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )
A.30 B.40 C.50 D.60
高为3,底边长为8的等腰三角形腰长为( ).
A.3 B.4 C.5 D.6
如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是( )
A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4
张大爷离家出门散步,他先向正东走了30m,接着又向正南走了40m,此时他离家的距离为( )
A.30m B.40m C.50m D.70m
如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于( )
A.75 B.100 C.120 D.125
如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )
A.50 B.62 C.65 D.68
二、填空题
有四个三角形,分别满足下列条件:
(1)一个内角等于另外两个内角之和;
(2)三个内角之比为3:4:5;
(3)三边之比为5:12:13;
(4)三边长分别为7、24、25.
其中直角三角形有 个.
如果△ABC的三边长a,b,c满足关系式(a-24)2+∣b-18∣+∣c-30∣=0,则△ABC的形状是 。
若三角形三边之比为3:4:5,周长为24,则三角形面积 .
以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则第三个正方形的面积为 .
如图,已知Rt△ABC中,∠BCA=90°,CD是斜边上的中线,BC=12,AC=5,那么CD= .
已知△ABC,按如下步骤作图:
①以A为圆心,AC长为半径画弧;
②以B为圆心,BC长为半径画弧,与前一条弧相交于点D,连接CD.
若AC=5,BC=CD=8,则AB的长为 .
三、解答题
如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.
(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
操场上有一根竖直立在地面上的旗杆,绳子自然下垂到地面还剩余2米,当把绳子拉开8米后,绳子刚好斜着拉直下端接触地面(如图①)
(1)请根据你的阅读理解,将题目的条件补充完整:如图②,Rt△ABC中,∠C=90°,BC=8米,AB比AC长2米,求AC的长.根据(1)中的条件,求出旗杆的高度.
如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:
(1)边AC,AB,BC的长;(2)点C到AB边的距离;(3)求△ABC的面积。
如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE; (2)若CD=,求AD的长.
如图,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)求证:2CD2=AD2+DB2.
已知△ABC三边长a,b,c满足a2+b2+c2-12a-16b-20c+200=0,请判断△ABC的形状并说明理由.
观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c
根据你发现的规律,请写出
(1)当a=19时,求b、c的值;
(2)当a=2n+1时,求b、c的值;
(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.
\s 0 参考答案
答案为:C.
C.
C
答案为:C.
答案为:B.
A.
A
答案为:C
答案为:B
答案为:C
B.
A
答案为:3.
答案为:直角三角形
答案为:24;
答案为:36或164.
答案为:6.5.
答案为:3+4.
解:(1)MN不会穿过原始森林保护区.理由如下:
过点C作CH⊥AB于点H.
设CH=x m.
由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.
在Rt△ACH中,AH=CH=x m,
在Rt△HBC中,BC=2x m.由勾股定理,得HB=x m.
∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.
∴MN不会穿过原始森林保护区.
(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.
根据题意,得=(1+25%)×.解得y=25.
经检验,y=25是原方程的根.
∴原计划完成这项工程需要25天.
解:(1)补充条件:AB比BC大2. 设AC=x,则BC=x+2,在Rt△ABC,∠ACB=90°.
∵AC2+BC2=AB2,∴x2+82=(x+2)2, 解得x=15.答:旗杆高15米.
1)AC=,AB=,BC=;(2)点C到AB的距离是;(3)。
证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,
∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,
在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);
(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.
∵△ACE≌△BCD,∴∠B=∠CAE=45°
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.
由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.
解:a=6, b=8, c=10, 直角三角形
解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1
∵a=19,a2+b2=c2,
∴192+b2=(b+1)2,
∴b=180,
∴c=181;
(2)通过观察知c﹣b=1,
∵(2n+1)2+b2=c2,
∴c2﹣b2=(2n+1)2,
(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,
又c=b+1,
∴2b+1=(2n+1)2,
∴b=2n2+2n,c=2n2+2n+1;
中考数学一轮复习考点过关练习《勾股定理》(含答案): 这是一份中考数学一轮复习考点过关练习《勾股定理》(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习《勾股定理》基础巩固练习(含答案): 这是一份2023年中考数学一轮复习《勾股定理》基础巩固练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习《勾股定理》导向练习(含答案): 这是一份中考数学一轮复习《勾股定理》导向练习(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。