2021年中考数学一轮复习《轴对称与等腰三角形》基础练习卷(含答案)
展开一、选择题
下列图形中,对称轴的条数最少的图形是( )
A. B. C. D.
在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( )
A.1个 B.2个 C.3个 D.4个
下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
A. 1 B.2 C.3 D.4
如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )
在直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是( )
A.点A与点B(﹣3,﹣4)关于y轴对称
B.点A与点C(3,﹣4)关于x轴对称
C.点A与点C(4,﹣3)关于原点对称
D.点A与点F(﹣4,3)关于第二象限的平分线对称
如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为( )
A.15°或30° B.30°或45° C.45°或60° D.30°或60°
如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为( )
A.8 B.11 C.16 D.17
如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CD
B.CD垂直平分AB
C.AB与CD互相垂直平分
D.CD平分∠ACB
如果等腰三角形的一个底角为α,那么( )
A.α不大于45° B.0°<α<90° C.α不大于90° D.45°<α<90°
如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )
A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP
如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )
A.4cm B.3cm C.2cm D.1cm
如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
点A(3,﹣2)关于x轴对称的点的坐标是 .
如图,点P关于OA,OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若CD=18cm,则△PMN的周长为 cm.
如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为 .
矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,
则DE= cm.
等腰三角形的周长是25cm,一腰上的中线将周长分为3:2两部分,则此三角形的底边长为 cm或 cm.
三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2= °.
三、作图题
在边长为1的小正方形网格中,△ABC的顶点均在格点上,
(1)B点关于y轴的对称点坐标为 ;
(2)将△ABC向右平移3个单位长度得到△A1B1C1,请画出△A1B1C1;
(3)在(2)的条件下,A1的坐标为 ;
(4)求△ABC的面积.
四、解答题
在ΔABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D点,交AC于点E.
(1)若∠ABE=38°,求∠EBC的度数;
(2)若ΔABC的周长为36cm,一边为13cm,求ΔBCE的周长.
如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD,试猜想线段CE、BD之间的数量关系,并说明理由.
如图,已知△ABC和△ADE均为等边三角形,BD、CE交于点F.
(1)求证:BD=CE;(2)求锐角∠BFC的度数.
如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.
(1)求证:AE=CF;
(2)求∠ACF的度数.
如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.
(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.
(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
\s 0 参考答案
B
C
C
B
D
D
答案为:B.
答案为:A
B
C
答案为:C
C.
答案为:(3,2).
答案为:18cm.
答案为:2.
答案为:5.8.
答案为:或5.
答案为:130.
解:(1)B点关于y轴的对称点坐标为:(2,2);故答案为:(2,2);
(2)如图所示:△A1B1C1,即为所求;
(3)在(2)的条件下,A1的坐标为:(3,4);故答案为:(3,4);
(4)△ABC的面积为:2×3﹣×2×2﹣×1×1﹣×1×3=2.
∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=38°
∵AB=AC,∴∠ABC=∠C=71°∴∠EBC=∠ABC-∠ABE=71°-38°=33°
由ΔABC的周长为36cm AB>BC AB=AC可知AB=AC=13cm BC=10cm
ΔBCE的周长=BE+CE+BC=AC+BC=13+10=23(cm)
解:CE=BD,
理由:∵△ACB和△ADE均为等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
∴∠DAB=∠EAC.
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴CE=BD.
(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,
又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,
在△EAC和△DAB中,,∴△EAC≌△DAB,即可得出BD=CE.
(2)解:由(1)△EAC≌△DAB,可得∠ECA=∠DBA,
又∵∠DBA+∠DBC=60°,在△BFC中,∠ECA+∠DBC=60°,∠ACB=60°,
则∠BFC=180°﹣∠ACB﹣(∠ECA+∠DBC)=180°﹣60°﹣60°=60°.
(1)证明:∵△ABC是等边三角形,
∴AB=BC,∠ABE+∠EBC=60°.
∵△BEF是等边三角形,
∴EB=BF,∠CBF+∠EBC=60°.
∴∠ABE=∠CBF.
在△ABE和△CBF中,eq \b\lc\{(\a\vs4\al\c1(AB=BC,,∠ABE=∠CBF,EB=BF,)),
∴△ABE≌△CBF(SAS).
∴AE=CF.
(2)∵等边△ABC中,AD是∠BAC的角平分线,
∴∠BAE=30°,∠ACB=60°.
∵△ABE≌△CBF,
∴∠BCF=∠BAE=30°.
∴∠ACF=∠BCF+∠ACB=30°+60°=90°.
(1)证明:∵∠MAN=120°,AC平分∠MAN,
∴∠DAC=∠BAC=60°
∵∠ABC=∠ADC=90°,
∴∠DCA=∠BCA=30°,
在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°
∴AC=2AD,AC=2AB,
∴AD+AB=AC;
(2)解:结论AD+AB=AC成立.
理由如下:在AN上截取AE=AC,连接CE,
∵∠BAC=60°,
∴△CAE为等边三角形,
∴AC=CE,∠AEC=60°,
∵∠DAC=60°,
∴∠DAC=∠AEC,
∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,
∴∠ADC=∠EBC,
∴△ADC≌△EBC,
∴DC=BC,DA=BE,
∴AD+AB=AB+BE=AE,
∴AD+AB=AC.
中考数学一轮复习考点梳理+单元突破练习 轴对称(含答案): 这是一份中考数学一轮复习考点梳理+单元突破练习 轴对称(含答案),共15页。试卷主要包含了对称轴,对称点,线段的垂直平分线定义,等边三角形角的特点,等边三角形的判定等内容,欢迎下载使用。
2023年中考数学一轮复习《等腰三角形》基础巩固练习(含答案): 这是一份2023年中考数学一轮复习《等腰三角形》基础巩固练习(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮单元复习《轴对称与等腰三角形》夯基练习(2份打包,教师版+原卷版): 这是一份中考数学一轮单元复习《轴对称与等腰三角形》夯基练习(2份打包,教师版+原卷版),文件包含中考数学一轮单元复习《轴对称与等腰三角形》夯基练习教师版doc、中考数学一轮单元复习《轴对称与等腰三角形》夯基练习原卷版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。