苏科版八年级下册第11章 反比例函数11.1 反比例函数课时作业
展开第十一章 反比例函数
一、单选题
1.下列函数是反比例函数的是( )
A. B. C. D.
2.已知函数y=(m+2)x是反比例函数,则m的值是( )
A.2 B. C. D.
3.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
4.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是( )
A.或 B.或
C.或 D.或
5.如图,是双曲线上两点,且两点的横坐标分别是和的面积为,则的值为( )
A. B. C. D.
6.对于反比例函数,下列说法不正确的是( )
A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限
C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小
7.如图,点的坐标是是等边三角形,点在第一象限.若反比例函数的图象经过点,则的值是( )
A. B. C. D.
8.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为
A.8 B. C.4 D.
9.公元前世纪,古希腊数学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即“阻力阻力臂动力动力臂”.若现在已知某一杠杆的阻力和阻力臂分别为和,则动力(单位:)关于动力臂(单位:)的函数图象大致是( )
A. B.
C. D.
10.如图,在轴正半轴上依次截取OA1=A1A2= A2A3=…= An-1An,过点A1、A2、A3、…、An分别作轴的垂线,与反比例函数 (>0)交于点P1、P2、P3、…、Pn,连接P1P2、P2P3、…、Pn-1Pn,过点P2、P3、…、Pn分别向P1A1、P2A2、…、Pn-1An-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于( )
A.2 B. C.2n+1 D.
二、填空题
11.已知反比例函数的图像经过点,则__________.
12.若点P1(﹣1,m),P2(﹣2,n)在反比例函数()的图象上,则m_____n.(填“>”,“<”或“=”)
13.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数的图象上,则点C的坐标为__.
14.某品牌的饮水机接通电源后就进入自动程序:开机加热到水温 100℃, 停止加热,水温开始下降,此时水温 y(℃)与开机后用时 x(min)成反比 例关系,直至水温降至 30℃,饮水机关机.饮水机关机后即刻自动开机,重 复上述自动程序.若在水温为 30℃时,接通电源后,水温 y(℃)和时间 x(min)的关系如图所示,水温从 100℃降到 35℃所用的时间是________min.
三、解答题
15.已知函数解析式为y=(m-2)
(1)若函数为正比例函数,试说明函数y随x增大而减小
(2)若函数为二次函数,写出函数解析式,并写出开口方向
(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限
16.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与轴交于点A(-2.0),与反比例函数y=(m≠0)的图象交于点B(2,n),连接BO,若S△AOB=4.
(1)求反比例函数和一次函数的表达式:
(2)若直线AB与y轴的交点为C.求△OCB的面积
(3)根据图象,直接写出当x>0时,不等式>kx+b的解集.
17.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
18.长为的春游队伍,以的速度向东行进,如图1和图2,当队伍排尾行进到位置时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为,当甲返回排尾后,他及队伍均停止行进.设排尾从位置开始行进的时间为,排头与的距离为
(1)当时,解答:
①求与的函数关系式(不写的取值范围);
②当甲赶到排头位置时,求的值;在甲从排头返回到排尾过程中,设甲与位置的距离为,求与的函数关系式(不写的取值范围)
(2)设甲这次往返队伍的总时间为,求与的函数关系式(不写的取值范围),并写出队伍在此过程中行进的路程.
19.超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:
v(千米/小时) | 75 | 80 | 85 | 90 | 95 |
t(小时) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;
(2)汽车上午7:30从超越公司出发,能否在上午10:00之前到达新时代市场?请说明理由
答案
1.B
2.A
3.B
4.B
5.C
6.C
7.C
8.A
9.A
10.B
11.
12.>.
13.(3,6).
14.13
15.解:(1)若为正比例函数则 -2=1,m=±,
∴m-2<0,函数y随x增大而减小;
(2) 若函数为二次函数,-2=2且m-2≠0,
∴m=-2,函数解析式为y=-4x2,开口向下
(3)若函数为反比例函数,-2=-1, m=±1, m-2<0,
解析式为y=-x-1或y=-3x-1,函数在二四象限
16.解:(1)由A(-2,0),得OA=2;
∵点B(2,n)在第一象限内,S△AOB=4,
∴OA•n=4;
∴n=4;
∴点B的坐标是(2,4);
将点B的坐标(2,4)代入反比例函数,得,
∴m=8;
∴反比例函数的解析式为:y=;
将点A(2,0),B(2,4)的坐标分别代入y=kx+b,得 ,
解得;
∴一次函数的表达式y=x+2.
(2)在y=x+2中,令x=0,得y=2,
∴点C的坐标是(0,2),
∴OC=2,
∴S△OCB=×2×2=2.
(3)由于B点坐标为(2,4),可知不等式的解集0<x<2.
故答案为(1)y=,y=x+2;(2)S△OCB=2;(3)0<x<2.
17.(1)材料加热时,设y=ax+15(a≠0),
由题意得60=5a+15,
解得a=9,
则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).
停止加热时,设y=(k≠0),
由题意得60=,
解得k=300,
则停止加热进行操作时y与x的函数关系式为y=(x≥5);
(2)把y=15代入y=,得x=20,
因此从开始加热到停止操作,共经历了20分钟.
答:从开始加热到停止操作,共经历了20分钟.
18.(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300;
②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m,甲返回时间为:(t﹣150)s,∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;
因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.
(2)T=t追及+t返回,在甲这次往返队伍的过程中队伍行进的路程为:v400;
因此T与v的函数关系式为:T,此时队伍在此过程中行进的路程为400m.
19.(1)根据表格中数据,可知V=,
∵v=75时,t=4,
∴k=75×4=300
∴V=
经检验,其它数据满足该函数关系式.
(2)不能
∵10﹣7.5=2.5
∴t=2.5时,V==120>100,
∴汽车上午7:30从超越公司出发,不能在上午10:00之前到达新时代市场
苏科版八年级下册第11章 反比例函数11.1 反比例函数课时训练: 这是一份苏科版八年级下册第11章 反比例函数11.1 反比例函数课时训练,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
苏科版八年级下册11.1 反比例函数巩固练习: 这是一份苏科版八年级下册11.1 反比例函数巩固练习,共22页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
初中数学苏科版八年级下册第11章 反比例函数11.1 反比例函数测试题: 这是一份初中数学苏科版八年级下册第11章 反比例函数11.1 反比例函数测试题,共8页。试卷主要包含了单选题,四象限,解答题等内容,欢迎下载使用。