所属成套资源:高考物理(2010~2020)十年真题专项练习
高考物理(2010~2020)真题专项练习 18 选修3-3热力学综合2(解析版))
展开
这是一份高考物理(2010~2020)真题专项练习 18 选修3-3热力学综合2(解析版)),共23页。
\l _Tc5973 题型四、理想气体状态方程与热力学第一定律 PAGEREF _Tc5973 1
\l _Tc1295 题型五、液柱模型 PAGEREF _Tc1295 10
\l _Tc29550 题型六、气缸模型 PAGEREF _Tc29550 17
题型四、理想气体状态方程与热力学第一定律
1.(2020天津)水枪是孩子们喜爱的玩具,常见的气压式水枪储水罐示意如图。从储水罐充气口充入气体,达到一定压强后,关闭充气口。扣动扳机将阀门M打开,水即从枪口喷出。若在不断喷出的过程中,罐内气体温度始终保持不变,则气体( )
A. 压强变大B. 对外界做功
C. 对外界放热D. 分子平均动能变大
【答案】B
【解析】A.随着水向外喷出,气体的体积增大,由于温度不变,根据恒量
可知气体压强减小,A错误;BC.由于气体体积膨胀,对外界做功,根据热力学第一定律
气体温度不变,内能不变,一定从外界吸收热量,B正确,C错误;
D.温度是分子平均动能的标志,由于温度不变,分子的平均动能不变,D错误。故选B。
2.(2020全国2)下列关于能量转换过程的叙述,违背热力学第一定律的有_______,不违背热力学第一定律、但违背热力学第二定律的有_______。(填正确答案标号)
A. 汽车通过燃烧汽油获得动力并向空气中散热
B. 冷水倒入保温杯后,冷水和杯子的温度都变得更低
C. 某新型热机工作时将从高温热源吸收的热量全部转化为功,而不产生其他影响
D. 冰箱的制冷机工作时从箱内低温环境中提取热量散发到温度较高的室内
【答案】 (1). B (2). C
【解析】燃烧汽油产生的内能一方面向机械能转化,同时热传递向空气转移。既不违背热力学第一定律,也不违背热力学第二定律;
B.冷水倒入保温杯后,没有对外做功,同时也没有热传递,内能不可能减少,故违背热力学第一定律;
C.某新型热机工作时将从高温热源吸收的热量全部转化为功,必然产生其他影响故违背热力学第二定律;
D.制冷机消耗电能工作时从箱内低温环境中提取热量散发到温度较高的室内,发生了内能的转移,同时对外界产生了影响。既不违背热力学第一定律,也不违背热力学第二定律。
3.(2020全国2)潜水钟是一种水下救生设备,它是一个底部开口、上部封闭的容器,外形与钟相似。潜水钟在水下时其内部上方空间里存有空气,以满足潜水员水下避险的需要。为计算方便,将潜水钟简化为截面积为S、高度为h、开口向下的圆筒;工作母船将潜水钟由水面上方开口向下吊放至深度为H的水下,如图所示。已知水的密度为ρ,重力加速度大小为g,大气压强为p0,Hh,忽略温度的变化和水密度随深度的变化。
(1)求进入圆筒内水的高度l;
(2)保持H不变,压入空气使筒内水全部排出,求压入的空气在其压强为p0时的体积。
【答案】(1);(2)
【解析】(1)设潜水钟在水面上方时和放入水下后筒内气体的体积分别为V0和V1,放入水下后筒内气体的压强为p1,由玻意耳定律和题给条件有
p1V1= p0V0 ①
V0=hS ②
V1=(h–l)S ③
p1= p0+ ρg(H–l) ④
联立以上各式并考虑到Hh,h >l,解得
⑤
(2)设水全部排出后筒内气体的压强为p2;此时筒内气体的体积为V0,这些气体在其压强为p0时的体积为V3,由玻意耳定律有
p2V0= p0V3 ⑥
其中
p2= p0+ ρgH ⑦
设需压入筒内的气体体积为V,依题意
V = V3–V0 ⑧
联立②⑥⑦⑧式得
⑨
4.(2020江苏)一定质量的理想气体从状态A经状态B变化到状态C,其图象如图所示,求该过程中气体吸收的热量Q。
【答案】
【解析】根据图像可知状态A和状态C温度相同,内能相同;故从A经B到C过程中气体吸收的热量等于气体对外所做的功。根据图像可知状态A到状态B为等压过程,气体对外做功为
状态B到状态C为等容变化,气体不做功;故A经B到C过程中气体吸收的热量为
5.(2019全国2)如p-V图所示,1、2、3三个点代表某容器中一定量理想气体的三个不同状态,对应的温度分别是T1、T2、T3。用N1、N2、N3分别表示这三个状态下气体分子在单位时间内撞击容器壁上单位面积的次数,则N1______N2,T1______T3,T3,N2______N3。(填“大于”“小于”或“等于”)
【答案】(1). 大于 (2). 等于 (3). 大于
【解析】1、2等体积,2、3等压强,由pV=nRT得:=,V1=V2,故=,可得:T1=2T2,即T1>T2,由于分子密度相同,温度高,碰撞次数多,故N1>N2;
由于p1V1= p3V3;故T1=T3;
则T3>T2,又p2=p3,2状态分析密度大,分析运动缓慢,单个分子平均作用力小,3状态分子密度小,分子运动剧烈,单个分子平均作用力大。故3状态碰撞容器壁分子较少,即N2>N3;
6.(2019全国1)热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改部其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为013 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的容积为3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃。氩气可视为理想气体。
(1)求压入氩气后炉腔中气体在室温下的压强;
(2)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强。
【答案】(1) (2)
【解析】(1)设初始时每瓶气体的体积为,压强为;使用后气瓶中剩余气体的压强为,假设体积为,压强为的气体压强变为时,其体积膨胀为,由玻意耳定律得:
被压入进炉腔的气体在室温和条件下的体积为:
设10瓶气体压入完成后炉腔中气体的压强为,体积为,由玻意耳定律得:
联立方程并代入数据得:
(2)设加热前炉腔的温度为,加热后炉腔的温度为,气体压强为,由查理定律得:
联立方程并代入数据得:
7.(2018全国3)如图,一定量的理想气体从状态a变化到状态b,其过程如p-V图中从a到b的直线所示。在此过程中______。
A.气体温度一直降低
B.气体内能一直增加
C.气体一直对外做功
D.气体一直从外界吸热
E.气体吸收的热量一直全部用于对外做功
【答案】BCD
【解析】试题分析本题考查对一定质量的理想气体的p——V图线的理解、理想气体状态方程、热力学第一定律、理想气体内能及其相关的知识点。
解析 一定质量的理想气体从a到b的过程,由理想气体状态方程paVa/Ta=pbVb/Tb可知,Tb>Ta,即气体的温度一直升高,选项A错误;根据理想气体的内能只与温度有关,可知气体的内能一直增加,选项B正确;由于从a到b的过程中气体的体积增大,所以气体一直对外做功,选项C正确;根据热力学第一定律,从a到b的过程中,气体一直从外界吸热,选项D正确;气体吸收的热量一部分增加内能,一部分对外做功,选项E错误。
8.(2017·全国3)如图,一定质量的理想气体从状态a出发,经过等容过程ab到达状态b再经过等温过程bc到达状态c,最后经等压过程ca回到状态a。下列说法正确的是________。
A.在过程ab中气体的内能增加
B.在过程ca中外界对气体做功
C.在过程ab中气体对外界做功
D.在过程bc中气体从外界吸收热量
E.在过程ca中气体从外界吸收热量
【答案】: ABD
【解析】: (1)ab过程是等容变化,ab过程压强增大,温度升高,气体内能增大,选项A正确;而由于体积不变,气体对外界不做功,选项C错误。ca过程是等压变化,体积减小,外界对气体做功,选项B正确:体积减小过程中,温度降低,内能减小,气体要放出热量,选项E错误。bc过程是等温变化,内能不变,体积增大,气体对外界做功,则需要吸收热量,选项D正确。
9.(2016·全国1)一定量的理想气体从状态a开始,经历等温或等压过程ab、bc、cd、da回到原状态,其p T图象如图所示,其中对角线ac的延长线过原点O。下列判断正确的是________。(填正确答案标号)
A.气体在a、c两状态的体积相等
B.气体在状态a时的内能大于它在状态c时的内能
C.在过程cd中气体向外界放出的热量大于外界对气体做的功
D.在过程da中气体从外界吸收的热量小于气体对外界做的功
E.在过程bc中外界对气体做的功等于在过程da中气体对外界做的功
【答案】: ABE
【解析】: 由理想气体状态方程eq \f(pV,T)=C得, p=eq \f(C,V)T,由图象可知,Va=Vc,选项A正确;理想气体的内能只由温度决定,而Ta>Tc,故气体在状态a时的内能大于在状态c时的内能,选项B正确;由热力学第一定律ΔU=Q+W知,cd过程温度不变,内能不变,则Q=-W,选项C错误;da过程温度升高,即内能增大,则吸收的热量大于对外做的功,选项D错误;bc过程和da过程互逆,则做功的多少相同,选项E正确。
10.(2016·全国2)关于热力学定律,下列说法正确的是________。
A.气体吸热后温度一定升高
B.对气体做功可以改变其内能
C.理想气体等压膨胀过程一定放热
D.热量不可能自发地从低温物体传到高温物体
E.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡
【答案】: BDE
【解析】: 根据热力学定律,气体吸热后如果对外做功,则温度不一定升高,说法A错误。改变物体内能的方式有做功和传热,对气体做功可以改变其内能,说法B正确。理想气体等压膨胀对外做功,根据eq \f(pV,T)=恒量知,膨胀过程一定吸热,说法C错误。根据热力学第二定律,热量不可能自发地从低温物体传到高温物体,说法D正确。两个系统达到热平衡时,温度相等,如果这两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡,说法E正确。故选B、D、E。
11.(2015重庆)某驾驶员发现中午时车胎内的气压高于清晨时的,且车胎体积增大.若这段时间胎内气体质量不变且可视为理想气体,那么( )
A.外界对胎内气体做功,气体内能减小 B.外界对胎内气体做功,气体内能增大
C.胎内气体对外界做功,内能减小 D.胎内气体对外界做功,内能增大
【答案】D
【解析】:对车胎内的理想气体分析知,体积增大为气体为外做功,内能只有动能,而动能的标志为温度,故中午温度升高,内能增大,故选D。
考点:本题考查理想气体的性质、功和内能、热力学第一定律。
12.(2015重庆)北方某地的冬天室外气温很低,吹出的肥皂泡会很快冻结.若刚吹出时肥皂泡内气体温度为,压强为,肥皂泡冻结后泡内气体温度降为.整个过程中泡内气体视为理想气体,不计体积和质量变化,大气压强为.求冻结后肥皂膜内外气体的压强差.
【答案】
【解析】对气泡分析发生等容变化有:
,
可得:,故内外气体的压强差为
13.(2015山东)扣在水平桌面上的热杯盖有时会发生被顶起的现象;如图,截面积为S的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300K,压强为大气压强P0。当封闭气体温度上升至303K时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部压强立即减为P0,温度仍为303K。再经过一段时间,内部气体温度恢复到300K。整个过程中封闭气体均可视为理想气体。求:
(ⅰ)当温度上升到303K且尚未放气时,封闭气体的压强;
(ⅱ)当温度恢复到300K时,竖直向上提起杯盖所需的最小力。
【答案】(ⅰ)1.01P0;(ⅱ)0.02P0S
【解析】(ⅰ)气体进行等容变化,开始时,压强P0,温度T0=300K;当温度上升到303K且尚未放气时,压强为P1,温度T1=303K;根据可得:
(ⅱ)当内部气体温度恢复到300K时,由等容变化方程可得:,
解得
当杯盖恰被顶起时有:
若将杯盖提起时所需的最小力满足:,
解得:
14.(2015北京)下列说法正确的是( )
A.物体放出热量,其内能一定减小
B.物体对外做功,其内能一定减小
C.物体吸收热量,同时对外做功,其内能可能增加
D.物体放出热量,同时对外做功,其内能可能不变
【答案】C
【解析】:物体内能的改变方式有两种:做功和热传递,只说某一种方式我们无法
判断内能是否变化,故 A、B 选项错误;物体放出热量又同时对外做功内能一定
减小,故 D 选项错误。物体吸收热量同时对外做功,内能可能增大、减小或不
变,故 C 选项正确。
15.(2013江苏)如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。 其中,和为等温过程,和为绝热过程(气体与外界无热量交换)。 这就是著名的“卡诺循环”。
(1)该循环过程中,下列说法正确的是______。
(A)过程中,外界对气体做功
(B) 过程中,气体分子的平均动能增大
(C) 过程中,单位时间内碰撞单位面积器壁的分子数增多
(D) 过程中,气体分子的速率分布曲线不发生变化
(2)该循环过程中,内能减小的过程是_______ (选填“”、“”、“”或“”)。 若气体在过程中吸收63kJ 的热量,在过程中放出38kJ 的热量,则气体完成一次循环对外做的功为_______ kJ。
(3)若该循环过程中的气体为1ml,气体在A状态时的体积为10L,在B状态时压强为A状态时的。 求气体在B状态时单位体积内的分子数。 (已知阿伏加德罗常数,计算结果保留一位有效数字)
【答案】 (1)C (2) 25
(3)等温过程,单位体积内的分子数.
解得,代入数据得
【解析】:A选项:从图上看:A到B过程体积变大,则气体对外做功,W<0,故A项错误;对B项:B到C过程为绝热过程,则热交换Q=0,且从图上看,气体的体积增大,气体对外做功,W<0,由热力学第一定律ΔU=Q+W知:ΔU<0,则气体的温度将变低,气体分子的平均动能变小,故B项错误;对C项:从图上看,C到D 过程的气体压强在增大,则单位时间内碰撞单位面积器壁的分子数增多,故C项正确;对D项:D到A 为绝热过程,则热交换Q=0,且从图上看,气体的体积减小,外界对气体做功W>0,由热力学第一定律ΔU=Q+W知,气体的内能ΔU>0,故气体温度升高,则气体分子的速率分布曲线会发生变化,故D项错误。本题答案为:C。
(2)从(1)的分析中,知内能减小的过程为B到C。B到C和D到A为绝热过程,无热量交换,若在A到B过程中吸收63 kJ 的热量,在C®D 过程中放出38 kJ 的热量,则整个过程热量交换Q总=Q吸-Q放=25kJ,整个循环中内能变化量ΔU=0,由ΔU=Q+W知W=-25kJ,即整个过程对外做的功为25kJ。
(3)A ®B过程为等温过程,由得,则由关系式,代入数据可得气体在B状态时单位体积内的分子为:。
题型五、液柱模型
16.(2020全国3)如图,两侧粗细均匀、横截面积相等、高度均为H=18cm的U型管,左管上端封闭,右管上端开口。右管中有高h0= 4cm的水银柱,水银柱上表面离管口的距离l= 12cm。管底水平段的体积可忽略。环境温度为T1=283K。大气压强p0 =76cmHg。
(i)现从右侧端口缓慢注入水银(与原水银柱之间无气隙),恰好使水银柱下端到达右管底部。此时水银柱的高度为多少?
(ii)再将左管中密封气体缓慢加热,使水银柱上表面恰与右管口平齐,此时密封气体的温度为多少?
【答案】(i)12.9cm;(ii)363K
【解析】(i)设密封气体初始体积为V1,压强为p1,左、右管的截面积均为S,密封气体先经等温压缩过程体积变为V2,压强变为p2.由玻意耳定律有
设注入水银后水银柱高度为h,水银的密度为ρ,按题设条件有,
,
联立以上式子并代入题给数据得h=12.9cm;
(ii)密封气体再经等压膨胀过程体积变为V3,温度变为T2,由盖一吕萨克定律有
按题设条件有代入题给数据得:T=363K
17.(2016·全国3)一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞。初始时,管内汞柱及空气柱长度如图所示。用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止。求此时右侧管内气体的压强和活塞向下移动的距离。已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0=75.0 cmHg。环境温度不变。
【答案】: 144 cmHg 9.42 cm
【解析】: 设初始时,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2=p0,长度为l2。活塞被下推h后,右管中空气柱的压强为p1′,长度为l1′;左管中空气柱的压强为p2′,长度为l2′。以cmHg为压强单位。
由题给条件得p1=p0+(20.0-5.00) cmHg① l1′=(20.0-eq \f(20.0-5.00,2)) cm②
由玻意耳定律得p1l1=p1′l1′③
联立①②③式和题给条件得
p1′=144 cmHg④
依题意p2′=p1′⑤
l2′=4.00 cm+eq \f(20.0-5.00,2)cm-h⑥
由玻意耳定律得p2l2=p2′l2′⑦
联立④⑤⑥⑦式和题给条件得h=9.42 cm
18.(2019全国3)如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm。若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。已知大气压强为76 cmHg,环境温度为296 K。
(i)求细管的长度;
(i)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。
【答案】见解析
【解析】(i)设细管的长度为L,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,气体体积为V1,压强为p1。由玻意耳定律有
pV=p1V1 ①
由力的平衡条件有
p=p0+ρgh ②
p1=p0–ρgh ③
式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强。由题意有
V=S(L–h1–h) ④
V1=S(L–h) ⑤
由①②③④⑤式和题给条件得
L=41 cm ⑥
(ii)设气体被加热前后的温度分别为T0和T,由盖–吕萨克定律有
⑦
由④⑤⑥⑦式和题给数据得
T=312 K ⑧
19.(2018全国3)在两端封闭、粗细均匀的U形细玻璃管内有一股水银柱,水银柱的两端各封闭有一段空气。当U形管两端竖直朝上时,左、右两边空气柱的长度分别为l1=18.0 cm和l2=12.0 cm,左边气体的压强为12.0 cmHg。现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边。求U形管平放时两边空气柱的长度。在整个过程中,气体温度不变。
【答案】7.5 cm
【解析】试题分析 本题考查玻意耳定律、液柱模型、关联气体及其相关的知识点。
解析 设U形管两端竖直朝上时,左、右两边气体的压强分别为p1和p2。U形管水平放置时,两边气体压强相等,设为p,此时原左、右两边气体长度分别变为l1′和l2′。由力的平衡条件有
①
式中为水银密度,g为重力加速度大小。
由玻意耳定律有
p1l1=pl1′②
p2l2=pl2′③
l1′–l1=l2–l2′④
由①②③④式和题给条件得
l1′=22.5 cm⑤
l2′=7.5 cm⑥
20.(2018全国1)如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K。开始时,K关闭,汽缸内上下两部分气体的压强均为。现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为时,将K关闭,活塞平衡时其下方气体的体积减小了。不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g。求流入汽缸内液体的质量。
K
【答案】见解析
【解析】设活塞再次平衡后,活塞上方气体的体积为,压强为;下方气体的体积为,压强为。在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得
①
②
由已知条件得
③
④
设活塞上方液体的质量为m,由力的平衡条件得
⑤
联立以上各式得
⑥
21.(2014全国)粗细均匀、导热良好、装有适量水银的U型管竖直放置,右端与大气相通,左端封闭气柱长(可视为理想气体),两管中水银面等高。现将右端与一低压舱(未画出)接通,稳定后右管水银面高出左管水银面。(环境温度不变,大气压强)
①求稳定后低压舱内的压强(用“cmHg”作单位)。
②此过程中左管内的气体对外界______________(填“做正功”“做负功”或“不做功”),气体将_____________________(填“吸热”或 “放热”)。
【答案】:见解析
【解析】设U型管横截面积为S,右端与大气相通时左管中封闭气体压强为,右端与一低压舱接通后左管中封闭气体压强为,气柱长度为,稳定后低压舱内的压强为。左管中封闭气体发生等温变化,根据玻意耳定律得
P1V1=P2V2
P1=P0
P2=P+Ph V1=L1S V2=L2S
由几何关系得:h=2(l2-l1)
联立以上各式代入数据得:P=50cmHg.
做正功;吸热
22.(2011全国)如图,一上端开口,下端封闭的细长玻璃管,下部有长l1=66cm的
水银柱,中间封有长l2=6.6cm的空气柱,上部有长l3=44cm的水银柱,此时水银面恰好与管口平齐。已知大气压强为P=76cmHg。如果使玻璃管绕低端在竖直平面内缓慢地转动一周,求在开口向下和转回到原来位置时管中空气柱的长度。封入的气体可视为理想气体,在转动过程中没有发生漏气。
【解析】:设玻璃管开口向上时,空气柱的压强为
①
式中,和g分别表示水银的密度和重力加速度。
玻璃管开口向下时,原来上部的水银有一部分会流出,封闭端会有部分真空。设此时开口端剩下的水银柱长度为x则
②
式中,为管内空气柱的压强,由玻意耳定律得
③
式中,h是此时空气柱的长度,S为玻璃管的横截面积,由①②③式和题给条件得
④
从开始转动一周后,设空气柱的压强为,则
⑤
由玻意耳定律得
⑥
式中,是此时空气柱的长度。由①②③⑤⑥式得
⑦
23.(2011山东)气体温度计结构如图所示。玻璃测温泡A内充有理想气体,通过细玻璃管B和水银压强计相连。开始时A处于冰水混合物中,左管C中水银面在O点处,右管D中水银面高出O点h1=14cm。后将A放入待测恒温槽中,上下移动D,使C中水银面仍在O点处,测得D中水银面高出O点h2=44cm。(已知外界大气压为1个标准大气压,1标准大气压相当于76cmHg)
①求恒温槽的温度。
②此过程A内气体内能 (填“增大”或“减小”),气体不对外做功,气体将 (填“吸热”或“放热”)。
【答案】:①364K ②增大 吸热
【解析】: ①设恒温槽的温度为T2,由题意知A内气体发生等容变化
由查理定律得: ①
② ③
联立①②③式解得④
②理想气体的内能只由温度决定,A气体的温度升高,所以内能增大。由热力学第一定律知,气体不对外做功,气体将吸热。
题型六、气缸模型
24.(2020全国1)甲、乙两个储气罐储存有同种气体(可视为理想气体)。甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为。现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等。求调配后:
(i)两罐中气体的压强;
(ii)甲罐中气体的质量与甲罐中原有气体的质量之比。
【答案】(i);(ii)
【解析】(i)气体发生等温变化,对甲乙中的气体,可认为甲中原气体有体积V变成3V,乙中原气体体积有2V变成3V,则根据玻意尔定律分别有
,
则
则甲乙中气体最终压强
(ii)若调配后将甲气体再等温压缩到气体原来的压强为p,则
计算可得
由密度定律可得,质量之比等于
2.(2020全国3)如图,一开口向上的导热气缸内。用活塞封闭了一定质量的理想气体,活塞与气缸壁间无摩擦。现用外力作用在活塞上。使其缓慢下降。环境温度保持不变,系统始终处于平衡状态。在活塞下降过程中( )
A 气体体积逐渐减小,内能增知
B. 气体压强逐渐增大,内能不变
C. 气体压强逐渐增大,放出热量
D. 外界对气体做功,气体内能不变
E. 外界对气体做功,气体吸收热量
【答案】BCD
【解析】A.理想气体的内能与温度之间唯一决定,温度保持不变,所以内能不变。A错误;
B.由理想气体状态方程,可知体积减少,温度不变,所以压强增大。因为温度不变,内能不变。B正确;CE.由理想气体状态方程,可知体积减少,温度不变,所以压强增大。体积减少,外接对系统做功,且内能不变,由热力学第一定律可知,系统放热。C正确;E错误。
D.体积减少,外接对系统做功。理想气体的内能与温度之间唯一决定,温度保持不变,所以内能不变。故D正确。故选BCD。
28.(2019全国2)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在地面上,汽缸内壁光滑。整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:
(1)抽气前氢气的压强;
(2)抽气后氢气的压强和体积。
【答案】(1)(p0+p);(2);
【解析】(1)设抽气前氢气的压强为p10,根据力的平衡条件得
(p10–p)·2S=(p0–p)·S①
得p10=(p0+p)②
(2)设抽气后氢气的压强和体积分别为p1和V1,氢气的压强和体积分别为p2和V2,根据力的平衡条件有p2·S=p1·2S③
由玻意耳定律得p1V1=p10·2V0④
p2V2=p0·V0⑤
由于两活塞用刚性杆连接,故
V1–2V0=2(V0–V2)⑥
联立②③④⑤⑥式解得
⑦
⑧
29.(2019全国1)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度__________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________(填“大于”“小于”或“等于”)外界空气的密度。
【答案】 (1). 低于 (2). 大于
【解析】:由题意可知,容器与活塞绝热性能良好,容器内气体与外界不发生热交换,故,但活塞移动的过程中,容器内气体压强减小,则容器内气体正在膨胀,体积增大,气体对外界做功,即,根据热力学第一定律可知:,故容器内气体内能减小,温度降低,低于外界温度。
最终容器内气体压强和外界气体压强相同,根据理想气体状态方程:
又,m为容器内气体质量联立得:
取容器外界质量也为m的一部分气体,由于容器内温度T低于外界温度,故容器内气体密度大于外界。故本题答案:低于;大于。
30.(2018全国2)如图,一竖直放置的气缸上端开口,气缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体。已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计他们之间的摩擦。开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0。现用电热丝缓慢加热气缸中的气体,直至活塞刚好到达b处。求此时气缸内气体的温度以及在此过程中气体对外所做的功。重力加速度大小为g。
(1)开始时活塞位于a处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动。设此时汽缸中气体的温度为T1,压强为p1,根据查理定律有
①
根据力的平衡条件有
②
联立①②式可得
③
此后,汽缸中的气体经历等压过程,直至活塞刚好到达b处,设此时汽缸中气体的温度为T2;活塞位于a处和b处时气体的体积分别为V1和V2。根据盖—吕萨克定律有
④
式中
V1=SH⑤
V2=S(H+h)⑥
联立③④⑤⑥式解得:
⑦
从开始加热到活塞到达b处的过程中,汽缸中的气体对外做的功为
⑧
31.(2017·全国卷2)如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空。现将隔板抽开,气体会自发扩散至整个汽缸。待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积。假设整个系统不漏气。下列说法正确的是________。
A.气体自发扩散前后内能相同
B.气体在被压缩的过程中内能增大
C.在自发扩散过程中,气体对外界做功
D.气体在被压缩的过程中,外界对气体做功
E.气体在被压缩的过程中,气体分子的平均动能不变
【答案】: ABD
【解析】:气体向真空膨胀时不受阻碍,气体不对外做功,由于汽缸是绝热的,没有热交换,所以气体扩散后内能不变,选项A正确。气体被压缩的过程中,外界对气体做功,且没有热交换,根据热力学第一定律,气体的内能增大,选项B、D正确。
气体在真空中自发扩散的过程中气体不对外做功,选项C错误。
气体在压缩过程中,内能增大,由于一定质量的理想气体的内能完全由温度决定,温度越高,内能越大,气体分子的平均动能越大,选项E错误。
32.(2015全国1)如图,一固定的竖直气缸有一大一小两个同轴圆筒组成,两圆筒中各有一个活塞,已知大活塞的质量为m1=2.50kg,横截面积为s1=80.0cm2,小活塞的质量为m2=1.50kg,横截面积为s2=40.0cm2;两活塞用刚性轻杆连接,间距保持为l=40.0cm,气缸外大气压强为p=1.00×105Pa,温度为T=303K。初始时大活塞与大圆筒底部相距,两活塞间封闭气体的温度为T1=495K,现气缸内气体温度缓慢下降,活塞缓慢下移,忽略两活塞与气缸壁之间的摩擦,重力加速度g取10m/s2,求
( = 1 \* rman i)在大活塞与大圆筒底部接触前的瞬间,缸内封闭气体的温度
( = 2 \* rman ii)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强
【答案】(i)330K (ii) 1.01105 Pa
【解析】(i) 设初始时气体体积为V1 ,在大活塞与大圆筒底部刚接触时,缸内封闭气体的体积为V2 ,温度为T2 ,由题给条件得:
V1 = s2( - ) + s1() ······· eq \\ac(○,1)
V2 = s2 ······· eq \\ac(○,2)
在活塞缓慢下移的过程中,用P1表示缸内气体的压强,由力的平衡条件得:
s1(P1 – P) = m1g + m2g + s2(P1 – P)······ eq \\ac(○,3)
故缸内的气体的压强不变 ,由盖·吕萨克定律有:
= ······ eq \\ac(○,4)
联立 eq \\ac(○,1) eq \\ac(○,2) eq \\ac(○,4)式并代入题给数据得:T2 = 330K ······ eq \\ac(○,5)
(ii)在大活塞与大圆筒底面刚接触时,被封闭气体的压强为P1 ,在此后与汽缸外大气达到热平衡的过程中,被封闭气体的体积不变,没达到热平衡时被封闭气体的压强为P/ ,由查理定律有: = ······ eq \\ac(○,6)
联立 eq \\ac(○,3) eq \\ac(○,5) eq \\ac(○,6)式并代入题给数据得: P/ = 1.01105 Pa ······ eq \\ac(○,7)
33.(2015海南)如图,一底面积为S、内壁光滑的圆柱形容器竖直放置在水平地面上,开口向上,内有两个质量均为m的相同活塞A和B ;在A与B之间、B与容器底面之间分别封有一定量的同样的理想气体,平衡时体积均为V。已知容器内气体温度始终不变,重力加速度大小为g,外界大气压强为。现假设活塞B发生缓慢漏气,致使B最终与容器底面接触。求活塞A移动的距离。
【答案】
【解析】A与B之间、B与容器底面之间的气体压强分别为、,在漏气前,对A分析有,对B有
B最终与容器底面接触后,AB间的压强为P,气体体积为,则有
因为温度失重不变,对于混合气体有,
漏气前A距离底面的高度为,
漏气后A距离底面的高度为
联立可得
34.(2013山东)我国“蛟龙”号深海探测船载人下潜超七千米,再创载人深潜新纪录。在某次深潜实验中,“蛟龙”号探测到990m深处的海水温度为280K。某同学利用该数据来研究气体状态随海水温度的变化,如图所示,导热性良好的气缸内封闭一定质量的气体,不计活塞的质量和摩擦,气缸所处海平面的温度T=300K,压强P0=1 atm,封闭气体的体积V=3m2。如果将该气缸下潜至990m深处,此过程中封闭气体可视为理想气体。
①求990m深处封闭气体的体积(1 atm相当于10m深的海水产生的压强)。
②下潜过程中封闭气体___________(填“吸热”或“放热”),传递的热量__________(填“大于”或“小于”)外界对气体所做的功。
【答案】:见解析
【解析】: eq \\ac(○,1)当气缸下潜至990m时,设封闭气体的压强为p,温度为T,体积为V,由题意知 p=100atm eq \\ac(○,1)
根据理想气体状态方程得 eq \\ac(○,2)
代入数据得 eq \\ac(○,3)
eq \\ac(○,2)放热;大于。
相关试卷
这是一份高考物理(2010~2020)真题专项练习 21 近代物理(解析版),共22页。
这是一份高考物理(2010~2020)真题专项练习 20 选修3-4光学(解析版),共29页。
这是一份高考物理(2010~2020)真题专项练习 17 选修3-3热力学综合1(解析版),共7页。