- 2019年高考数学试卷(理科)(新课标3)精编试卷及答案解析 试卷 130 次下载
- 2019年北京市高考数学试卷(文科)精编试卷答案解析 试卷 84 次下载
- 2019年天津市高考数学试卷(文科)精编试卷答案解析 试卷 79 次下载
- 2019年天津市高考数学试卷(理科)精编试卷答案解析 试卷 84 次下载
- 2019年江苏省高考数学精编试卷答案解析 试卷 90 次下载
2019年北京市高考数学试卷(理科)精编答案解析
展开绝密★启用前
2019年普通高等学校招生全国统一考试
数 学(理)(北京卷)
本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知复数z=2+i,则
A. B. C. 3 D. 5
2. 执行如图所示的程序框图,输出的s值为
A. 1 B. 2 C. 3 D. 4
3. 已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是
A. B. C. D.
4. 已知椭圆(a>b>0)的离心率为,则
A. a2=2b2 B. 3a2=4b2 C. a=2b D. 3a=4b
5. 若x,y满足,且y≥−1,则3x+y的最大值为
A. −7 B. 1 C. 5 D. 7
6. 在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( )
A. 1010.1 B. 10.1 C. lg10.1 D.
7. 设点A,B,C不共线,则“与的夹角为锐角”是“”的
A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
8. 数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A ① B. ② C. ①② D. ①②③
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分。
9. 函数f(x)=sin22x的最小正周期是__________.
10. 设等差数列{an}的前n项和为Sn,若a2=−3,S5=−10,则a5=__________,Sn的最小值为__________.
11. 某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.
12. 已知l,m是平面外的两条不同直线.给出下列三个论断:
①l⊥m;②m∥;③l⊥.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
13. 设函数f(x)=ex+ae−x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是___________.
14. 李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到金额均不低于促销前总价的七折,则x的最大值为__________.
三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。
15. △ABC中,a=3,b−c=2,cosB=.
(Ⅰ)求b,c的值;
(Ⅱ)求sin(B–C)的值.
16. 如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.
17. 改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
交付金额(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
18. 已知抛物线C:x2=−2py经过点(2,−1).
(Ⅰ)求抛物线C的方程及其准线方程;
(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
19. 已知函数.
(Ⅰ)求曲线的斜率为1的切线方程;
(Ⅱ)当时,求证:;
(Ⅲ)设,记在区间上的最大值为M(a),当M(a)最小时,求a的值.
20. 已知数列,从中选取第项、第项、…、第项,若,则称新数列为的长度为的递增子列.规定:数列的任意一项都是的长度为1的递增子列.
(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;
(Ⅱ)已知数列的长度为的递增子列的末项的最小值为,长度为的递增子列的末项的最小值为.若,求证: ;
(Ⅲ)设无穷数列的各项均为正整数,且任意两项均不相等.若的长度为的递增子列末项的最小值为,且长度为末项为的递增子列恰有个,求数列的通项公式.
2019年高考数学试卷(理科)(新课标3)精编答案解析: 这是一份2019年高考数学试卷(理科)(新课标3)精编答案解析,文件包含2019年高考数学试卷理科新课标3精编原卷doc、2019年高考数学试卷理科新课标3精编答案解析doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
2019年高考数学试卷(理科)(新课标2)精编答案解析: 这是一份2019年高考数学试卷(理科)(新课标2)精编答案解析,文件包含2019年高考数学试卷理科新课标2精编原卷doc、2019年高考数学试卷理科新课标2精编答案解析doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
2019年高考数学试卷(理科)(新课标1)精编答案解析: 这是一份2019年高考数学试卷(理科)(新课标1)精编答案解析,文件包含2019年高考数学试卷理科新课标1精编原卷doc、2019年高考数学试卷理科新课标1精编答案解析doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。