|课件下载
搜索
    上传资料 赚现金
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)
    立即下载
    加入资料篮
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)01
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)02
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)03
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)04
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)05
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)06
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)07
    人教版高中数学选修4-4课件:模块复习课 第二课 (共59张PPT)08
    还剩51页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A选修4-4第二章 参数方程综合与测试复习课件ppt

    展开
    这是一份高中数学人教版新课标A选修4-4第二章 参数方程综合与测试复习课件ppt,共59页。PPT课件主要包含了网络体系,参数方程等内容,欢迎下载使用。

    【核心速填】1.参数方程的定义在给定的坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数 ①并且对于t的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,
    那么方程组①就叫做这条曲线的_________,联系变数x,y的变数t叫做参变数,简称参数.参数方程中的参数可以是有物理意义或几何意义的变数,也可以是没有明显意义的变数.
    2.常见曲线的参数方程(1)直线.直线的标准参数方程即过定点M0(x0,y0),倾斜角为α(α≠ )的直线l的参数方程的标准形式为____________(t为参数)
    (2)圆.①圆x2+y2=r2的参数方程为____________(θ为参数)②圆(x-a)2+(y-b)2=r2的参数方程为____________(θ为参数)
    (3)椭圆.中心在原点,对称轴为坐标轴的椭圆b2x2+a2y2=a2b2的参数方程为_________ (φ为参数)
    (4)双曲线.中心在原点,对称轴为坐标轴的双曲线b2x2-a2y2=a2b2的参数方程为___________ (φ为参数)
    (5)抛物线.抛物线y2=2px(p>0)的参数方程为__________ (α为参数)或__________ (t为参数)
    【易错警示】(1)直线的标准参数方程为 (t为参数)①参数t的几何意义:即t为有向线段 的数量,并注意t的正负值.
    ②参数t的几何意义中有如下常用结论:(i)若M1,M2为直线上任意两点:M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1-t2|.(ii)若M0为M1M2的中点,则有t1+t2=0.(iii)弦M1M2的中点为M,则M0M=tM=
    (2)直线的参数方程的一般式 (t为参数)只有当a2+b2=1且b>0时,具有上述几何意义(若b<0,方程 也具有上述几何意义);当a2+b2≠0,且b>0时,参数方程 同样具有上述几何意义.
    (3)应用上述公式解题时,一定要区分直线的参数方程是否为标准形式,以免出现错误.
    类型一 参数方程化为普通方程【典例1】把下列参数方程化成普通方程:(1) (θ为参数)(2) (t为参数,a,b>0)
    【解析】(1)由所以5x2+4xy+17y2-81=0.
    (2)由题意,得所以①2-②2得 所以 =1,其中x>0.
    【方法技巧】参数方程化为普通方程的注意事项(1)在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致,由参数方程化为普通方程时需要考虑x的取值范围,注意参数方程与消去参数后所得的普通方程同解性的判定.
    (2)消除参数的常用方法有:①代入消参法;②三角消参法;③根据参数方程的特征,采用特殊的消参手段.
    【变式训练】1.抛物线 (t为参数)的准线方程是 (  )A.x=1   B.x=-1C.y=1D.y=-1【解析】选D.化参数方程为直角坐标方程,得x2=4y,其准线方程为y=-1.
    2.判断方程 (θ是参数且θ∈(0,π))表示的曲线的形状.
    【解析】两式平方相减得x2-y2=4,因为θ∈(0,π),所以x=sinθ+ ≥2,y=sinθ- = ≤0,所以方程表示的曲线是等轴双曲线 =1的右支在x轴及其下方的部分.
    类型二 直线与圆的参数方程的应用【典例2】(2016·沈阳高二检测)在直角坐标系xOy中,曲线C的参数方程为 (α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为
    (1)求曲线C与直线l在该直角坐标系下的普通方程.(2)动点A在曲线C上,动点B在直线l上,定点P(-1,1),求|PB|+|AB|的最小值.
    【解题指南】(1)利用sin2α+cs2α=1消去参数,可得曲线C的普通方程,根据 即可得直线l在该直角坐标系下的普通方程.(2)作点P关于直线的对称点Q,利用|PB|+|AB|=|QB|+ |AB|≥|QC|-1,仅当Q,B,A,C四点共线时,且A在B,C之间时等号成立,可求得最小值.
    【解析】(1)由曲线C的参数方程 可得(x-2)2+y2=1,由直线l的极坐标方程为 可得ρ(sinθ+csθ)=4,即x+y=4.
    (2)方法一:设P关于直线l的对称点为Q(a,b),故 所以Q(3,5),由(1)知曲线C为圆,圆心C(2,0),半径r=1,|PB|+|AB|=|QB|+|AB|≥|QC|-1.
    仅当Q,B,A,C四点共线时,且A在B,C之间时等号成立,故(|PB|+|AB|)min= -1.
    方法二:如图,圆心C关于直线l的对称点为D(4,2),连接PD,交直线l于点B,|PB|+|AB|=|PB|+|BC|-1=|PB|+|BD| -1≥|PD|-1= -1.
    【延伸探究】若本例的条件不变,圆心为C,如何在直线l上求一点B,使|PB|+|BC|取得最小值?求出最小值.
    【解析】如典例中的解析图可知,圆心C关于直线的对称点为D(4,2),连接PD,交直线l于点B,|PB|+|BC|= |PB|+|BD|≥|PD|= 求得B的坐标为
    【方法技巧】几何性质在求最大值或最小值中的应用(1)关于折线段的长度和或长度差的最大值或最小值求法,常常利用对称性以及两点之间线段最短解决.(2)有关点与圆、直线与圆的最大值或最小值问题,常常转化为经过圆心的直线、圆心到直线的距离等.
    【变式训练】1.(2016·成都高二检测)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合.曲线C的参数方程为 (φ为参数),直线l的极坐标方程是ρ(csθ+2sinθ)=15.若点P,Q分别是曲线C和直线l上的动点,则P,Q两点之间距离的最小值是(  )
    【解析】选C.曲线C的参数方程为 (φ为参数)的普通方程为 =1,直线l:ρ(csθ+2sinθ)=15的直角坐标方程是x+2y-15=0.因为点P,Q分别是曲线C和直线l上的动点,设P(3csθ,2sinθ),P到直线的距离为d=
    2.(2016·黄石高二检测)已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是 (t为参数).(1)将曲线C的极坐标方程化为直角坐标方程.(2)设直线l与x轴的交点是M,N是曲线C上一动点,求|MN|的最大值.
    【解题指南】(1)利用公式 将极坐标方程化为直角坐标方程.(2)将直线的参数方程化为普通方程,利用几何性质计算最大值.
    【解析】(1)曲线C的极坐标方程可化为ρ2=2ρsinθ,又x2+y2=ρ2,x=ρcsθ,y=ρsinθ,所以曲线C的直角坐标方程为x2+y2-2y=0.
    (2)将直线l的参数方程化为直角坐标方程,得y=- (x -2),令y=0,得x=2,即M点的坐标为(2,0).又曲线C为圆,圆C的圆心坐标为(0,1),半径r=1,则|MC|= .所以|MN|≤|MC|+r= +1.所以|MN|的最大值为 +1.
    类型三 直线与圆锥曲线的综合题【典例3】求椭圆 =1上的点到直线l:x+2y-10=0的最小距离及相应的点P的坐标.
    【解析】设椭圆 =1上的点P(2csθ, sinθ), P到直线l:x+2y-10=0的距离为d= 当且仅当sin(θ+ ) =1
    即θ= 时取等号,最小距离为 此时点P(2cs , sin ),即P 为所求.
    【方法技巧】椭圆的参数方程以及应用长半轴为a,短半轴为b,中心在原点的椭圆 =1 (a>b>0)的参数方程为 (θ为参数)椭圆的参数方程在计算最大值、最小值和取值范围等问题中有着广泛的应用,通常将上述问题转化为三角函数的性质加以解决.
    【变式训练】1.(2016·全国卷Ⅱ)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程.
    (2)直线l的参数方程是 (t为参数),l与C交于A,B两点,|AB|= ,求l的斜率.
    【解析】(1)整理圆的方程得x2+y2+12x+11=0,由 可知圆C的极坐标方程为ρ2+12ρcsθ+11=0.
    (2)由题意可得直线过原点且斜率存在,记直线的斜率为k,则直线的方程为kx-y=0,由垂径定理及点到直线距离公式知: 即 整理得k2= ,则k=± .
    2.(2016·临汾高二检测)在平面直角坐标系xOy中,曲线C的参数方程为 (t为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为3ρcsθ+2ρsinθ=12.
    (1)求曲线C的普通方程和直线l的直角坐标方程.(2)若直线l与曲线C交于A,B两点,M为曲线C与y轴负半轴的交点,求四边形OMAB的面积.
    【解析】(1)由 所以 =(cst)2+(sint)2=1.所以曲线C的普通方程为 在3ρcsθ+2ρsinθ=12中,由ρcsθ=x,ρsinθ=y得3x+2y-12=0.所以直线l的直角坐标方程为3x+2y-12=0.
    (2)由(1)可得M(0,-2 ),联立方程易得A(4,0),B(2,3),所以四边形OMAB的面积为 ×4×(3+2 )=6+4 .
    类型四 用参数法求轨迹方程【典例4】过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
    【解析】设M(x,y),设直线l1的方程为y-4=k(x-2),(k≠0)由l1⊥l2,则直线l2的方程为y-4=- (x-2),所以l1与x轴交点A的坐标为 l2与y轴交点B的坐标为
    因为M为AB的中点,所以 (k为参数)消去参数k,得x+2y-5=0.另外,当k=0时,l1与x轴无交点;当k不存在时,AB中点为M(1,2),满足上述轨迹方程.综上所述,M的轨迹方程为x+2y-5=0.
    【方法技巧】建立参数求动点轨迹方程的方法步骤(1)首先根据运动系统的运动规律设参数,然后运用这些参数列式,再从这些式子中消参,最后讨论轨迹的纯粹性和完备性.(2)参数法求轨迹方程的关键是设参数,参数不同,整个思维和运算过程不同,若设参数不当,则会增大运算量.
    (3)用参数法求解时,一般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横、纵坐标等.也可以没有具体的意义,选定参变量还要特别注意参数的取值范围.
    【变式训练】1.动圆x2+y2-2axcsθ-2bysinθ=0(a,b是正常数,a≠b,θ是参数)的圆心的轨迹是 (  )A.直线   B.圆   C.椭圆   D.双曲线
    【解析】选C.动圆x2+y2-2axcsθ-2bysinθ=0(a,b是正常数,a≠b,θ是参数)的圆心坐标的参数方程为 普通方程为 =1(a>0,b>0,a≠b),这是椭圆的普通方程.
    2.过抛物线y2=2px(p>0)的顶点O作两条互相垂直的弦OA,OB,求弦AB的中点M的轨迹方程.
    【解析】设M(x,y),直线OA的斜率为k(k≠0),则直线OB的斜率为- .直线OA的方程为y=kx,
    相关课件

    数学选修4-5第二讲 讲明不等式的基本方法综合与测试复习ppt课件: 这是一份数学选修4-5第二讲 讲明不等式的基本方法综合与测试复习ppt课件,共39页。PPT课件主要包含了网络体系,a-b0等内容,欢迎下载使用。

    人教版新课标A选修4-4第一章 坐标系综合与测试复习课件ppt: 这是一份人教版新课标A选修4-4第一章 坐标系综合与测试复习课件ppt,共39页。PPT课件主要包含了网络体系,acosθ,-2acosθ,asinθ,acosθ-φ,-2asinθ,所以S,故点A的球坐标为等内容,欢迎下载使用。

    高中人教版新课标A曲线的参数方程教学演示课件ppt: 这是一份高中人教版新课标A曲线的参数方程教学演示课件ppt,共60页。PPT课件主要包含了点的坐标间的关系,消去参数,xft,ygt,取值范围,失误案例等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map