![高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(一) Word版含解析 练习01](http://img-preview.51jiaoxi.com/3/3/5938685/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(一) Word版含解析 练习02](http://img-preview.51jiaoxi.com/3/3/5938685/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(一) Word版含解析 练习03](http://img-preview.51jiaoxi.com/3/3/5938685/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(二) Word版含解析 练习 试卷 13 次下载
- 高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2习题课 Word版含解析 试卷 11 次下载
- 高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.3 Word版含解析 练习 试卷 10 次下载
- 高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ)章章末检测B Word版含解析 试卷 12 次下载
- 高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ)章末检测A Word版含解析 试卷 12 次下载
人教版新课标A必修1第二章 基本初等函数(Ⅰ)2.3 幂函数巩固练习
展开课时目标 1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.
1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x是自变量,函数的定义域是________.
2.对数函数的图象与性质
3.反函数
对数函数y=lgax (a>0且a≠1)和指数函数__________________互为反函数.
一、选择题
1.函数y=eq \r(lg2x-2)的定义域是( )
A.(3,+∞) B.[3,+∞)
C.(4,+∞) D.[4,+∞)
2.设集合M={y|y=(eq \f(1,2))x,x∈[0,+∞)},N={y|y=lg2x,x∈(0,1]},则集合M∪N等于( )
A.(-∞,0)∪[1,+∞) B.[0,+∞)
C.(-∞,1] D.(-∞,0)∪(0,1)
3.已知函数f(x)=lg2(x+1),若f(α)=1,则α等于( )
A.0B.1C.2D.3
4.函数f(x)=|lg3x|的图象是( )
5.已知对数函数f(x)=lgax(a>0,a≠1),且过点(9,2),f(x)的反函数记为y=g(x),则g(x)的解析式是( )
A.g(x)=4xB.g(x)=2x
C.g(x)=9xD.g(x)=3x
6.若lgaeq \f(2,3)<1,则a的取值范围是( )
A.(0,eq \f(2,3)) B.(eq \f(2,3),+∞)
C.(eq \f(2,3),1) D.(0,eq \f(2,3))∪(1,+∞)
二、填空题
7.如果函数f(x)=(3-a)x,g(x)=lgax的增减性相同,则a的取值范围是______________.
8.已知函数y=lga(x-3)-1的图象恒过定点P,则点P的坐标是________.
9.给出函数则f(lg23)=________.
三、解答题
10.求下列函数的定义域与值域:
(1)y=lg2(x-2);
(2)y=lg4(x2+8).
11.已知函数f(x)=lga(1+x),g(x)=lga(1-x),(a>0,且a≠1).
(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.
(2)求使f(x)-g(x)>0的x的取值范围.
能力提升
12.已知图中曲线C1,C2,C3,C4分别是函数y=lga1x,y=lga2x,y=lga3x,y=lga4x的图象,则a1,a2,a3,a4的大小关系是( )
A.a4
1.函数y=lgmx与y=lgnx中m、n的大小与图象的位置关系.
当0
2.2.2 对数函数及其性质(一)
知识梳理
1.函数y=lgax(a>0,且a≠1) (0,+∞) 2.(0,+∞) R
(1,0) (-∞,0) [0,+∞) (0,+∞) (-∞,0] x轴
3.y=ax (a>0且a≠1)
作业设计
1.D [由题意得:eq \b\lc\{\rc\ (\a\vs4\al\c1(lg2x-2≥0,,x>0.))解得x≥4.]
2.C [M=(0,1],N=(-∞,0],因此M∪N=(-∞,1].]
3.B [α+1=2,故α=1.]
4.A [y=|lg3x|的图象是保留y=lg3x的图象位于x轴上半平面的部分(包括与x轴的交点),而把下半平面的部分沿x轴翻折到上半平面而得到的.]
5.D [由题意得:lga9=2,即a2=9,又∵a>0,∴a=3.
因此f(x)=lg3x,所以f(x)的反函数为g(x)=3x.]
6.D [由lgaeq \f(2,3)<1得:lgaeq \f(2,3)
当0综上可知,a的取值范围是(0,eq \f(2,3))∪(1,+∞).]
7.(1,2)
解析 由题意,得eq \b\lc\{\rc\ (\a\vs4\al\c1(0<3-a<1,,01,,a>1,))解得18.(4,-1)
解析 y=lgax的图象恒过点(1,0),令x-3=1,则x=4;
令y+1=0,则y=-1.
9.eq \f(1,24)
解析 ∵1
=f(lg23+3)=f(lg224)=
=eq \f(1,24).
10.解 (1)由x-2>0,得x>2,所以函数y=lg2(x-2)的定义域是(2,+∞),值域是R.
(2)因为对任意实数x,lg4(x2+8)都有意义,
所以函数y=lg4(x2+8)的定义域是R.
又因为x2+8≥8,
所以lg4(x2+8)≥lg48=eq \f(3,2),
即函数y=lg4(x2+8)的值域是[eq \f(3,2),+∞).
11.解 (1)当a=2时,函数f(x)=lg2(x+1)为[3,63]上的增函数,
故f(x)max=f(63)=lg2(63+1)=6,
f(x)min=f(3)=lg2(3+1)=2.
(2)f(x)-g(x)>0,即lga(1+x)>lga(1-x),
①当a>1时,1+x>1-x>0,得0
解 由x2-lgmx<0,得x2
∴只要x=eq \f(1,2)时,y=lgmeq \f(1,2)≥eq \f(1,4)=lgm.
∴eq \f(1,2)≤,即eq \f(1,16)≤m.又0
即实数m的取值范围是[eq \f(1,16),1).
定义
y=lgax (a>0,且a≠1)
底数
a>1
0图象
定义域
________
值域
________
单调性
在(0,+∞)上是增函数
在(0,+∞)上是减函数
共点性
图象过点________,即lga1=0
函数值
特点
x∈(0,1)时,
y∈________;
x∈[1,+∞)时,
y∈________
x∈(0,1)时,
y∈________;
x∈[1,+∞)时,
y∈________
对称性
函数y=lgax与y=的图象关于____对称
题 号
1
2
3
4
5
6
答 案
高中数学人教版新课标A必修12.1.2指数函数及其性质综合训练题: 这是一份高中数学人教版新课标A必修12.1.2指数函数及其性质综合训练题,共8页。试卷主要包含了1.2 指数函数及其性质,下列一定是指数函数的是,函数y=πx的值域是等内容,欢迎下载使用。
数学必修12.3 幂函数测试题: 这是一份数学必修12.3 幂函数测试题,共8页。试卷主要包含了3 幂函数,通过具体问题,了解幂函数的概念等内容,欢迎下载使用。
数学必修12.2.2对数函数及其性质课堂检测: 这是一份数学必修12.2.2对数函数及其性质课堂检测,共8页。试卷主要包含了2.2 对数函数及其性质,函数f=lg2的值域为等内容,欢迎下载使用。