终身会员
搜索
    上传资料 赚现金
    高中数学人教A必修5学业分层测评15 等比数列前n项和的性质及应用 Word版含解析
    立即下载
    加入资料篮
    高中数学人教A必修5学业分层测评15 等比数列前n项和的性质及应用 Word版含解析01
    高中数学人教A必修5学业分层测评15 等比数列前n项和的性质及应用 Word版含解析02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A必修52.5 等比数列的前n项和当堂达标检测题

    展开
    这是一份高中数学人教版新课标A必修52.5 等比数列的前n项和当堂达标检测题,共5页。

    1.已知an=(-1)n,数列{an}的前n项和为Sn,则S9与S10的值分别是( )
    A.1,1 B.-1,-1 C.1,0 D.-1,0
    【解析】 S9=-1+1-1+1-1+1-1+1-1=-1.
    S10=S9+a10=-1+1=0.
    【答案】 D
    2.已知等比数列的公比为2,且前5项和为1,那么前10项和等于( )
    A.31 B.33 C.35 D.37
    【解析】 根据等比数列性质得eq \f(S10-S5,S5)=q5,
    ∴eq \f(S10-1,1)=25,∴S10=33.
    【答案】 B
    3.等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列.若a1=1,则S4等于( )
    A.7 B.8 C.15 D.16
    【解析】 设{an}的公比为q,
    ∵4a1,2a2,a3成等差数列,
    ∴4a2=4a1+a3,即4a1q=4a1+a1q2,
    即q2-4q+4=0,
    ∴q=2,
    又a1=1,
    ∴S4=eq \f(1-24,1-2)=15,故选C.
    【答案】 C
    4.在等比数列{an}中,如果a1+a2=40,a3+a4=60,那么a7+a8=( )
    A.135 B.100
    C.95 D.80
    【解析】 由等比数列的性质知a1+a2,a3+a4,a5+a6,a7+a8成等比数列,
    其首项为40,公比为eq \f(60,40)=eq \f(3,2).
    ∴a7+a8=40×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))3=135.
    【答案】 A
    5.数列{an},{bn}都是等差数列,a1=5,b1=7,且a30+b30=60,则{an+bn}的前30项的和为( )
    A.1 000 B.1 020 C.1 040 D.1 080
    【解析】 {an+bn}的前30项的和S30=(a1+b1)+(a2+b2)+…+(a30+b30)=(a1+a2+a3+…+a30)+(b1+b2+b3+…+b30)=eq \f(30a1+a30,2)+eq \f(30b1+b30,2)=15(a1+a30+b1+b30)=1 080.
    【答案】 D
    二、填空题
    6.等比数列{an}共有2n项,它的全部各项的和是奇数项的和的3倍,则公比q=________.
    【解析】 设{an}的公比为q,则奇数项也构成等比数列,其公比为q2,首项为a1,
    S2n=eq \f(a11-q2n,1-q),
    S奇=eq \f(a1[1-q2n],1-q2).
    由题意得eq \f(a11-q2n,1-q)=eq \f(3a11-q2n,1-q2).
    ∴1+q=3,∴q=2.
    【答案】 2
    7.数列11,103,1 005,10 007,…的前n项和Sn=________.
    【解析】 数列的通项公式an=10n+(2n-1).
    所以Sn=(10+1)+(102+3)+…+(10n+2n-1)=(10+102+…+10n)+[1+3+…+(2n-1)]=eq \f(101-10n,1-10)+eq \f(n1+2n-1,2)=eq \f(10,9)(10n-1)+n2.
    【答案】 eq \f(10,9)(10n-1)+n2
    8.如果lg x+lg x2+…+lg x10=110,那么lg x+lg2x+…+lg10x=________.
    【解析】 由已知(1+2+…+10)lg x=110,
    ∴55lg x=110.∴lg x=2.
    ∴lg x+lg2x+…+lg10x=2+22+…+210=211-2=2 046.
    【答案】 2 046
    三、解答题
    9.在等比数列{an}中,已知S30=13S10,S10+S30=140,求S20的值. 【导学号:05920073】
    【解】 ∵S30≠3S10,∴q≠1.
    由eq \b\lc\{\rc\ (\a\vs4\al\c1(S30=13S10,,S10+S30=140,))得eq \b\lc\{\rc\ (\a\vs4\al\c1(S10=10,,S30=130.))
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(a11-q10,1-q)=10,,\f(a11-q30,1-q)=130.))
    ∴q20+q10-12=0,∴q10=3,
    ∴S20=eq \f(a11-q20,1-q)=S10(1+q10)=10×(1+3)=40.
    10.已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))的前5项和.
    【解】 若q=1,则由9S3=S6得9×3a1=6a1,则a1=0,不满足题意,故q≠1.
    由9S3=S6得9×eq \f(a11-q3,1-q)=eq \f(a11-q6,1-q),解得q=2.故an=a1qn-1=2n-1,eq \f(1,an)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1.
    所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是以1为首项,eq \f(1,2)为公比的等比数列,其前5项和为S5=eq \f(1×\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))5)),1-\f(1,2))=eq \f(31,16).
    [能力提升]
    1.(2015·广州六月月考)设等比数列{an}的前n项和为Sn,若S10∶S5=1∶2,则S15∶S5=( )
    A.3∶4 B.2∶3
    C.1∶2 D.1∶3
    【解析】 在等比数列{an}中,S5,S10-S5,S15-S10,…成等比数列,因为S10∶S5=1∶2,所以S5=2S10,S15=eq \f(3,4)S5,得S15∶S5=3∶4,故选A.
    【答案】 A
    2.设数列{an}的前n项和为Sn,称Tn=eq \f(S1+S2+…+Sn,n)为数列a1,a2,a3,…,an的“理想数”,已知数列a1,a2,a3,a4,a5的理想数为2 014,则数列2,a1,a2,…,a5的“理想数”为( )
    A.1 673 B.1 675 C.eq \f(5 035,3) D.eq \f(5 041,3)
    【解析】 因为数列a1,a2,…,a5的“理想数”为2 014,所以eq \f(S1+S2+S3+S4+S5,5)=2 014,即S1+S2+S3+S4+S5=5×2 014,所以数列2,a1,a2,…,a5的“理想数”为eq \f(2+2+S1+2+S2+…+2+S5,6)=eq \f(6×2+5×2 014,6)=eq \f(5 041,3).
    【答案】 D
    3.已知首项为eq \f(3,2)的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列,则an=________.
    【解析】 设等比数列{an}的公比为q,由S3+a3,S5+a5,S4+a4成等差数列,所以S5+a5-S3-a3=S4+a4-S5-a5,即4a5=a3,于是q2=eq \f(a5,a3)=eq \f(1,4).
    又{an}不是递减数列且a1=eq \f(3,2),所以q=-eq \f(1,2).
    故等比数列{an}的通项公式为
    an=eq \f(3,2)×-eq \f(1,2)n-1
    =(-1)n-1×eq \f(3,2n).
    【答案】 (-1)n-1×eq \f(3,2n)
    4.(2015·重庆高考)已知等差数列{an}满足a3=2,前3项和S3=eq \f(9,2).
    (1)求{an}的通项公式;
    (2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.
    【解】 (1)设{an}的公差为d,则由已知条件得
    a1+2d=2,3a1+eq \f(3×2,2)d=eq \f(9,2),
    化简得a1+2d=2,a1+d=eq \f(3,2),
    解得a1=1,d=eq \f(1,2),
    故{an}的通项公式an=1+eq \f(n-1,2),即an=eq \f(n+1,2).
    (2)由(1)得b1=1,b4=a15=eq \f(15+1,2)=8.
    设{bn}的公比为q,则q3=eq \f(b4,b1)=8,从而q=2,
    故{bn}的前n项和Tn=eq \f(b11-qn,1-q)=eq \f(1×1-2n,1-2)=2n-1.
    相关试卷

    人教版新课标A必修5第二章 数列2.5 等比数列的前n项和课时练习: 这是一份人教版新课标A必修5第二章 数列2.5 等比数列的前n项和课时练习,共6页。

    2021学年2.4 等比数列同步训练题: 这是一份2021学年2.4 等比数列同步训练题,共5页。

    人教版新课标A必修52.3 等差数列的前n项和精练: 这是一份人教版新课标A必修52.3 等差数列的前n项和精练,共5页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高中数学人教A必修5学业分层测评15 等比数列前n项和的性质及应用 Word版含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map