高中数学人教版新课标A选修1-11.2充分条件与必要条件课后测评
展开§1.2 充分条件与必要条件
课时目标 1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.
1.如果已知“若p,则q”为真,即p⇒q,那么我们说p是q的____________,q是p的____________.
2.如果既有p⇒q,又有q⇒p,就记作________.这时p是q的______________条件,简称________条件,实际上p与q互为________条件.如果pq且qp,则p是q的________________________条件.
一、选择题
1.“x>0”是“x≠0”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.设p:x<-1或x>1;q:x<-2或x>1,则綈p是綈q的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
3.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
5.设l,m,n均为直线,其中m,n在平面α内,“l⊥α”是“l⊥m且l⊥n”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.“a<0”是“方程ax2+2x+1=0至少有一个负数根”的( )
A.必要不充分条件 B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
题号 | 1 | 2 | 3 | 4 | 5 | 6 |
答案 |
|
|
|
|
|
|
二、填空题
7.用符号“⇒”或“”填空.
(1)a>b________ac2>bc2;
(2)ab≠0________a≠0.
8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-2<x<-1,则a的取值范围是________.
9.函数y=ax2+bx+c (a>0)在[1,+∞)上单调递增的充要条件是__________.
三、解答题
10.下列命题中,判断条件p是条件q的什么条件:
(1)p:|x|=|y|,q:x=y.
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形.
11.已知P={x|a-4<x<a+4},Q={x|x2-4x+3<0},若x∈P是x∈Q的必要条件,求实数a的取值范围.
能力提升
12.记实数x1,x2,…,xn中的最大数为max,最小数为
min.已知△ABC的三边边长为a,b,c(a≤b≤c),定义它的倾斜度为
l=max·min,
则“l=1”是“△ABC为等边三角形”的( )
A.必要而不充分条件
B.充分而不必要条件
C.充要条件
D.既不充分也不必要条件
13.已知数列{an}的前n项和为Sn=(n+1)2+c,探究{an}是等差数列的充要条件.
1.判断p是q的什么条件,常用的方法是验证由p能否推出q,由q能否推出p,对
于否定性命题,注意利用等价命题来判断.
2.证明充要条件时,既要证明充分性,又要证明必要性,即证明原命题和逆命题都成立,但要分清必要性、充分性是证明怎样的一个式子成立.“A的充要条件为B”的命题的证明:A⇒B证明了必要性;B⇒A证明了充分性.“A是B的充要条件”的命题的证明:A⇒B证明了充分性;B⇒A证明了必要性.
§1.2 充分条件与必要条件 答案
知识梳理
1.充分条件 必要条件
2.p⇔q 充分必要 充要 充要 既不充分又不必要
作业设计
1.A [对于“x>0”⇒“x≠0”,反之不一定成立.
因此“x>0”是“x≠0”的充分而不必要条件.]
2.A [∵q⇒p,∴綈p⇒綈q,反之不一定成立,
因此綈p是綈q的充分不必要条件.]
3.B [因为NM.所以“a∈M”是“a∈N”的必要而不充分条件.]
4.A [把k=1代入x-y+k=0,推得“直线x-y+k=0与圆x2+y2=1相交”;但“直线x-y+k=0与圆x2+y2=1相交”不一定推得“k=1”.故“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分而不必要条件.]
5.A [l⊥α⇒l⊥m且l⊥n,而m,n是平面α内两条直线,并不一定相交,所以l⊥m且l⊥n不能得到l⊥α.]
6.B [当a<0时,由韦达定理知x1x2=<0,故此一元二次方程有一正根和一负根,符合题意;当ax2+2x+1=0至少有一个负数根时,a可以为0,因为当a=0时,该方程仅有一根为-,所以a不一定小于0.由上述推理可知,“a<0”是“方程ax2+2x+1=0至少有一个负数根”的充分不必要条件.]
7.(1) (2)⇒
8.a>2
解析 不等式变形为(x+1)(x+a)<0,因当-2<x<-1时不等式成立,所以不等式的解为-a<x<-1.由题意有(-2,-1)(-a,-1),∴-2>-a,即a>2.
9.b≥-2a
解析 由二次函数的图象可知当-≤1,即b≥-2a时,函数y=ax2+bx+c在
[1,+∞)上单调递增.
10.解 (1)∵|x|=|y|x=y,
但x=y⇒|x|=|y|,
∴p是q的必要条件,但不是充分条件.
(2)△ABC是直角三角形△ABC是等腰三角形.
△ABC是等腰三角形△ABC是直角三角形.
∴p既不是q的充分条件,也不是q的必要条件.
(3)四边形的对角线互相平分四边形是矩形.
四边形是矩形⇒四边形的对角线互相平分.
∴p是q的必要条件,但不是充分条件.
11.解 由题意知,Q={x|1<x<3},Q⇒P,
∴,解得-1≤a≤5.
∴实数a的取值范围是[-1,5].
12.A [当△ABC是等边三角形时,a=b=c,
∴l=max·min=1×1=1.
∴“l=1”是“△ABC为等边三角形”的必要条件.
∵a≤b≤c,∴max=.
又∵l=1,∴min=,
即=或=,
得b=c或b=a,可知△ABC为等腰三角形,而不能推出△ABC为等边三角形.
∴“l=1”不是“△ABC为等边三角形”的充分条件.]
13.解 当{an}是等差数列时,∵Sn=(n+1)2+c,
∴当n≥2时,Sn-1=n2+c,
∴an=Sn-Sn-1=2n+1,
∴an+1-an=2为常数.
又a1=S1=4+c,
∴a2-a1=5-(4+c)=1-c,
∵{an}是等差数列,∴a2-a1=2,∴1-c=2.
∴c=-1,反之,当c=-1时,Sn=n2+2n,
可得an=2n+1 (n≥1)为等差数列,
∴{an}为等差数列的充要条件是c=-1.
人教a版数学【选修1-1】作业:3.1.3导数的几何意义(含答案): 这是一份高中数学人教版新课标A选修1-1本册综合测试题,共4页。试卷主要包含了∴点A处切线的斜率为6等内容,欢迎下载使用。
高中数学人教版新课标A选修1-11.2充分条件与必要条件课时练习: 这是一份高中数学人教版新课标A选修1-11.2充分条件与必要条件课时练习,共4页。
数学选修1-13.3导数在研究函数中的应用同步测试题: 这是一份数学选修1-13.3导数在研究函数中的应用同步测试题,共5页。试卷主要包含了3 函数的最大值与导数,由y′=0,得x=eq \f等内容,欢迎下载使用。