人教版新课标A选修1-12.2双曲线课后测评
展开学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.双曲线-=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是( )
A.17 B.7
C.7或17 D.2或22
【解析】 由双曲线方程-=1得a=5,
∴||PF1|-|PF2||=2×5=10.
又∵|PF1|=12,∴|PF2|=2或22.
故选D.
【答案】 D
2.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )
A.x2-=1 B.-y2=1
C.y2-=1 D.-=1
【解析】 由双曲线定义知,
2a=-=5-3=2,
∴a=1.
又c=2,∴b2=c2-a2=4-1=3,
因此所求双曲线的标准方程为x2-=1.
【答案】 A
3.设动点M到A(-5,0)的距离与它到B(5,0)的距离的差等于6,则P点的轨迹方程是( )
A.-=1 B.-=1
C.-=1(x<0) D.-=1(x>0)
【解析】 由双曲线的定义得,P点的轨迹是双曲线的一支.由已知得∴a=3,c=5,b=4.故P点的轨迹方程为-=1(x>0),因此选D.
【答案】 D
4.已知双曲线-=1的焦点为F1,F2,点M在双曲线上,且MF1⊥x轴,则F1到直线F2M的距离为( )
A. B.
C. D.
【解析】 不妨设点F1(-3,0),
容易计算得出
|MF1|==,
|MF2|-|MF1|=2.
解得|MF2|=.
而|F1F2|=6,在直角三角形MF1F2中,
由|MF1|·|F1F2|=|MF2|·d,
求得F1到直线F2M的距离d为.故选C.
【答案】 C
5.椭圆+=1与双曲线-=1有相同的焦点,则a的值是( )
A. B.1或-2
C.1或 D.1
【解析】 由于a>0,0<a2<4,且4-a2=a+2,所以可解得a=1,故选D.
【答案】 D
二、填空题
6.经过点P(-3,2)和Q(-6,-7),且焦点在y轴上的双曲线的标准方程是________. 【导学号:26160046】
【解析】 设双曲线的方程为mx2+ny2=1(mn<0),则解得故双曲线的标准方程为-=1.
【答案】 -=1
7.已知方程+=1表示的曲线为C.给出以下四个判断:
①当1<t<4时,曲线C表示椭圆;②当t>4或t<1时,曲线C表示双曲线;③若曲线C表示焦点在x轴上的椭圆,则1<t<;④若曲线C表示焦点在y轴上的双曲线,则t>4.
其中判断正确的是________(只填正确命题的序号).
【解析】 ①错误,当t=时,曲线C表示圆;②正确,若C为双曲线,则(4-t)(t-1)<0,∴t<1或t>4;③正确,若C为焦点在x轴上的椭圆,则4-t>t-1>0.∴1<t<;④正确,若曲线C为焦点在y轴上的双曲线,则,∴t>4.
【答案】 ②③④
8.已知F是双曲线-=1的左焦点,点A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.
【解析】 设右焦点为F′,依题意,
|PF|=|PF′|+4,∴|PF|+|PA|=|PF′|+4+|PA|=|PF′|+|PA|+4≥|AF′|+4=5+4=9.
【答案】 9
三、解答题
9.求以椭圆+=1短轴的两个端点为焦点,且过点A(4,-5)的双曲线的标准方程.
【解】 由+=1,得a=4,b=3,所以短轴两端点的坐标为(0,±3),又双曲线过A点,由双曲线定义得
2a=|-|
=2,∴a=,又c=3,
从而b2=c2-a2=4,
又焦点在y轴上,
所以双曲线的标准方程为-=1.
10.已知△ABC的两个顶点A,B分别为椭圆x2+5y2=5的左焦点和右焦点,且三个内角A,B,C满足关系式sin B-sin A=sin C.
(1)求线段AB的长度;
(2)求顶点C的轨迹方程.
【解】 (1)将椭圆方程化为标准形式为+y2=1.
∴a2=5,b2=1,c2=a2-b2=4,
则A(-2,0),B(2,0),|AB|=4.
(2)∵sin B-sin A=sin C,
∴由正弦定理得|CA|-|CB|=|AB|=2<|AB|=4,
即动点C到两定点A,B的距离之差为定值.
∴动点C的轨迹是双曲线的右支,并且c=2,a=1,
∴所求的点C的轨迹方程为x2-=1(x>1).
[能力提升]
1.已知F1,F2分别为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1||PF2|=( )
A.2 B.4
C.6 D.8
【解析】 由题意,得||PF1|-|PF2||=2,|F1F2|=2.因为∠F1PF2=60°,所以|PF1|2+|PF2|2-2|PF1|·|PF2|·cos 60°=|F1F2|2,所以(|PF1|-|PF2|)2+2|PF1||PF2|-2|PF1||PF2|×=8,所以|PF1|·|PF2|=8-22=4.
【答案】 B
2.(2016·临沂高二检测)已知双曲线的两个焦点F1(-,0),F2(,0),M是此双曲线上的一点,且·=0,||·||=2,则该双曲线的方程是( )
A.-y2=1 B.x2-=1
C.-=1 D.-=1
【解析】 由双曲线定义||MF1|-|MF2||=2a,两边平方得:|MF1|2+|MF2|2-2|MF1||MF2|=4a2,因为·=0,故△MF1F2为直角三角形,有|MF1|2+|MF2|2=(2c)2=40,而||·||=2,∴40-2×2=4a2,∴a2=9,∴b2=1,所以双曲线的方程为-y2=1.
【答案】 A
3.若F1,F2是双曲线8x2-y2=8的两焦点,点P在该双曲线上,且△PF1F2是等腰三角形,则△PF1F2的周长为________.
【解析】 双曲线8x2-y2=8可化为标准方程x2-=1,所以a=1,c=3,|F1F2|=2c=6.因为点P在该双曲线上,且△PF1F2是等腰三角形,所以|PF1|=|F1F2|=6,或|PF2|=|F1F2|=6,当|PF1|=6时,根据双曲线的定义有|PF2|=|PF1|-2a=6-2=4,所以△PF1F2的周长为6+6+4=16;同理当|PF2|=6时,△PF1F2的周长为6+6+8=20.
【答案】 16或20
4.如图2-2-2,已知双曲线中c=2a,F1,F2为左、右焦点,P是双曲线上的点,∠F1PF2=60°,S△F1PF2=12.求双曲线的标准方程.
【导学号:26160047】
图2-2-2
【解】 由题意可知双曲线的标准方程为-=1.
由于||PF1|-|PF2||=2a,
在△F1PF2中,由余弦定理得
cos 60°==
,
所以|PF1|·|PF2|=4(c2-a2)=4b2,
所以S△F1PF2=|PF1|·|PF2|·sin 60°=2b2·=b2,
从而有b2=12,所以b2=12,c=2a,结合c2=a2+b2,得a2=4.
所以双曲线的标准方程为-=1.
人教版新课标A选修1-13.2导数的计算巩固练习: 这是一份人教版新课标A选修1-13.2导数的计算巩固练习,共7页。
高中数学人教版新课标A选修1-11.1命题及其关系同步测试题: 这是一份高中数学人教版新课标A选修1-11.1命题及其关系同步测试题,共5页。
人教版新课标A选修1-1第二章 圆锥曲线与方程2.1椭圆当堂检测题: 这是一份人教版新课标A选修1-1第二章 圆锥曲线与方程2.1椭圆当堂检测题,共10页。